We practice the standard interconnect module designs and applications.

1. (Decoders) Given four four-input Boolean functions
 \[f_1(a, b, c, d) = \sum m(0, 1, 4, 7) + \sum d(2, 3, 5), \]
 \[f_2(a, b, c, d) = \sum m(1, 4, 11) + \sum d(3, 14), \]
 \[f_3(a, b, c, d) = \sum m(0, 8, 10, 11) + \sum d(9, 12, 15). \]
 \[f_4(a, b, c, d) = \sum m(2, 12) + \sum d(8, 11, 14). \]

 1.1. Implement the functions using a minimal network of 4:16 decoders and OR gates.
 1.2. Implement the functions using a minimal network of 3:8 decoders and OR gates.
 1.3. Implement the functions using a minimal network of 2:4 decoders and OR gates.

2. (Encoders) A high bit priority encoder inputs \(2^n \) bits from \(2^n \) devices and outputs \(n \) bit as the index of the asserted input line with the highest priority (largest in binary code) as shown in page 25 of lecture 11. Implement a high bit 16:4 priority encoder using 4:2 high bit priority encoders and minimal networks of NAND gates.

3. (Multiplexers) Assume a dual-railed system, where you have access to any variable and its complement. Implement the following four-input Boolean function as indicated in each of the following subproblems.
 \[f(a, b, c, d) = \sum m(1, 2, 3, 5, 8, 13) + \sum d(0, 7, 10, 14). \]

 3.1. Implement the function using a minimal network of 8:1 multiplexers.
 3.2. Implement the function using a minimal network of 4:1 multiplexers.
 3.3. Implement the function using a minimal network of 2:1 multiplexers.

4. Assume a dual-railed system, where you have access to any variable and its complement. Given a four-input Boolean function
 \[f(a, b, c, d) = \sum m(0, 3, 4, 7, 10, 12) + \sum d(5, 11, 14). \]

 4.1. Implement the function using a minimal network of 2:4 decoders and OR gates.
 4.2. Implement the function using a minimal network of 4:1 multiplexers.
 4.3. Implement the function using a minimal network of 2:1 multiplexers.