CSE140 Week 6 Discussion

Xinyuan Wang

05/11/2018
Outline

• Finite State Machines
• Timing and Retiming
Mealy and Moore Machines

- Mealy Machine: general
 - $y_i(t) = f_i(X(t), S(t))$
- Moore Machine: Output is independent of current input
 - $y_i(t) = f_i(S(t))$
 - $S_i(t + 1) = g_i(X(t), S(t))$
- How to convert Mealy to Moore machine?
Implementation

✓ Given: State diagram

 Circuit implementation?

 o Example: Lec8 and HW3 “pattern recognizer”

✓ Given: Circuit implementation

 Input output relation?
Implementation

✓ Given: State diagram
 • Derive the state table and assign states
 • Excitation table
 • Equations (K-maps if needed)
 • Circuit implementation
Examples: given a state diagram

- **Step 1: Derive state table and assign states**

 - **Table:**

PS/Input	\(X = 0 \)	\(X = 1 \)
\(S_0 \)	\(S_0, 0 \)	\(S_1, 0 \)
\(S_1 \)	\(S_0, 0 \)	\(S_2, 0 \)
\(S_2 \)	\(S_0, 1 \)	\(S_2, 0 \)

- **Assignments:**
 - \(S_0 \Rightarrow 00 \)
 - \(S_1 \Rightarrow 01 \)
 - \(S_2 \Rightarrow 10 \)
Examples: given a state diagram

- **Step 2: Excitation table**
 - $S_0 \Rightarrow 00$
 - $S_1 \Rightarrow 01$
 - $S_2 \Rightarrow 10$

<table>
<thead>
<tr>
<th>PS/Input</th>
<th>$X = 0$</th>
<th>$X = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>$S_0,0$</td>
<td>$S_1,0$</td>
</tr>
<tr>
<td>S_1</td>
<td>$S_0,0$</td>
<td>$S_2,0$</td>
</tr>
<tr>
<td>S_2</td>
<td>$S_0,1$</td>
<td>$S_2,0$</td>
</tr>
</tbody>
</table>

- **Excitation table**

<table>
<thead>
<tr>
<th>$Q_1(t)$</th>
<th>$Q_0(t)$</th>
<th>$X(t)$</th>
<th>$Q_1(t + 1)$</th>
<th>$Q_0(t + 1)$</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Examples: given a state diagram

- **Step 3:** Derive equations
 - Use *D Flip-Flop*: $Q(t+1) = D(t)$
 - K-maps

<table>
<thead>
<tr>
<th>$X(t)/Q_1(t)Q_0(t)$</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>

$$D_1(t) = X(t)Q_0(t) + X(t)Q_1(t)$$
Examples: given a state diagram

Step 3: Derive equations
- Use D Flip-Flop: $Q(t+1) = D(t)$
- K-maps

\[
D_0(t) = X(t)Q'_0(t)Q'_1(t)
\]

\[
X(t)/Q_1(t)Q_0(t) \quad 00 \quad 01 \quad 11 \quad 10
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & X \\
1 & 1 & 0 & X \\
\end{array}
\]

\[
y = X'(t)Q_1(t)
\]

\[
\begin{array}{cccccc}
Q_1(t) & Q_0(t) & X(t) & Q_1(t + 1) & Q_0(t + 1) & y \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & X & X & X \\
1 & 1 & 1 & X & X & X \\
\end{array}
\]

\[
D_0(t) \quad output
\]
Examples: given a state diagram

- **Step 4: Circuit implementation**
 - Use D Flip-Flop: \(Q(t+1) = D(t) \)

\[
\begin{align*}
D_1(t) &= X(t)Q_0(t) + X(t)Q_1(t) \\
D_0(t) &= X(t)Q_0'(t)Q_1'(t) \\
y(t) &= X'(t)Q_1(t)
\end{align*}
\]
Implementation

✓ Given: Circuit implementation
 • Excitation table
 • Identify states and derive a state table
 • State diagram
 • Input output relation
Example: given a circuit implementation

• **Step 1:** Excitation table

4. (Finite State Machine Specification) Analyze the following circuit.

4.1 Write the transition (excitation) table (8 points).

• **D Flip-Flop:** $Q(t+1) = D(t)$
 - $D(t)$ can be found with current input $X(t)$ and current state $Q_0(t)$, $Q_1(t)$
Examples : given a circuit implementation

• **Step 1: Excitation table**

 o **State Equations**

 \[
 Q_0(t + 1) = XQ_1(t) + XQ_0(t)'
 \]

 \[
 Q_1(t + 1) = XQ_1(t) + XQ_0(t)
 \]

 \[
 M = X'Q_1(t)Q_0(t)
 \]

 o **Excitation table**

<table>
<thead>
<tr>
<th>(Q_1(t))</th>
<th>(Q_0(t))</th>
<th>(X)</th>
<th>(Q_1(t+1))</th>
<th>(Q_0(t+1))</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Examples: given a circuit implementation

• Step 2: Identify states and derive state table

 o $S_0 \leftarrow 00$
 $S_1 \leftarrow 01$
 $S_2 \leftarrow 10$
 $S_3 \leftarrow 11$

<table>
<thead>
<tr>
<th>PS/Input</th>
<th>$X = 0$</th>
<th>$X = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>$S_0,0$</td>
<td>$S_1,0$</td>
</tr>
<tr>
<td>S_1</td>
<td>$S_0,0$</td>
<td>$S_2,0$</td>
</tr>
<tr>
<td>S_2</td>
<td>$S_0,0$</td>
<td>$S_3,0$</td>
</tr>
<tr>
<td>S_3</td>
<td>$S_0,1$</td>
<td>$S_3,0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Q_1(t)$</th>
<th>$Q_0(t)$</th>
<th>X</th>
<th>$Q_1(t + 1)$</th>
<th>$Q_0(t + 1)$</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Examples: given a circuit implementation

• Step 3: State diagram

<table>
<thead>
<tr>
<th>PS/Input</th>
<th>$X = 0$</th>
<th>$X = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>$S_0,0$</td>
<td>$S_1,0$</td>
</tr>
<tr>
<td>S_1</td>
<td>$S_0,0$</td>
<td>$S_2,0$</td>
</tr>
<tr>
<td>S_2</td>
<td>$S_0,0$</td>
<td>$S_3,0$</td>
</tr>
<tr>
<td>S_3</td>
<td>$S_0,1$</td>
<td>$S_3,0$</td>
</tr>
</tbody>
</table>
Examples: given a circuit implementation

• Step 4: Input output relation

<table>
<thead>
<tr>
<th>cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>state</td>
<td>S_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>state</td>
<td>S_0</td>
<td>S_1</td>
<td>S_2</td>
<td>S_3</td>
<td>S_0</td>
<td>S_0</td>
<td>S_0</td>
<td>S_1</td>
<td>S_2</td>
<td>S_3</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Sequential Networks: Timing Constraint (without skew)

• Setup Time Constraint

\[T_c \geq t_{pcq} + t_{pd} + t_{setup} \]

• Hold Time Constraint

\[t_{ccq} + t_{cd} \geq t_{hold} \]
Sequential Networks: Timing Constraint (with skew)

- **Time Skew**
 - Difference between two clock edges
 - $t_{skew} = CLK2 - CLK1$

- **Setup Time Constraint**
 - CLK2 is earlier than CLK1 ($t_{skew} < 0$)

 \[
 T_c \geq t_{pcq} + t_{pd} + t_{setup} - t_{skew}
 \]

- **Hold Time Constraint**
 - CLK2 is later than CLK1

 \[
 t_{ccq} + t_{cd} > t_{hold} + t_{skew}
 \]
Example: Timing

- Propagation delay and contamination delay

 ✅ Adder
 - C_{in} to C_{out}/S
 - $t_{pd} = 20\text{ps}$
 - $t_{cd} = 15\text{ps}$
 - A/B to C_{out}
 - $t_{pd} = 25\text{ps}$
 - $t_{cd} = 22\text{ps}$
 - A/B to S
 - $t_{pd} = 30\text{ps}$
 - $t_{cd} = 22\text{ps}$

 ✅ D-FF
 - $t_{pcq} = 35\text{ps}$
 - $t_{ccq} = 25\text{ps}$
 - $t_{\text{setup}} = 30\text{ps}$
 - $t_{\text{hold}} = 10\text{ps}$

Maximum frequency?

Figure 2: A four-bit addition machine.
Example: Timing (Without Clock Skew)

- Find the longest path of combinational logic
 \[t_{pd(max)} = 3 \times t_{pd(c_{in} to c_{out})} + t_{pd(A,B to c_{out})} \]

- Setup Time Constraint
 \[T_c \geq t_{pcq} + t_{pd} + t_{setup} \]
 \[T_c \geq (35 + 3 \times 20 + 25 + 30) = 150\text{ps} \]
 the maximum frequency \(\frac{1}{T} = 6.67\text{GHz} \)

- Hold Time Constraint
 \[t_{cd(min)} = t_{cd(c_{in} to S)} = 15\text{ps} \]
 \[t_{ccq} + t_{cd(min)} = 25 + 15 = 40\text{ps} \geq t_{\text{hold}} \]
 \[= 10\text{ps} \]

Figure 2: A four-bit addition machine.
Example: Timing (With Clock Skew)

- Hold Time Constraint
 \[t_{ccq} + t_{cd(min)} = 25 + 15 = 40\, \text{ps} \]
 \[\geq t_{\text{hold}} + t_{\text{skew}} = (10 + \Delta)\, \text{ps} \]
 \[t_{\text{skew}} = 30\, \text{ps} \]
 CLK2 Later than CLK1 !!!

- Setup Time Constraint
 \[T_c + t_{\text{skew}} \geq t_{\text{pcq}} + t_{\text{pa}} + t_{\text{setup}} \]
 \[T_c \geq (150 - 30) = 120\, \text{ps} \]
 the maximum frequency \[\frac{1}{T} = 8.33\, \text{GHz} \]

Figure 2: A four-bit addition machine.