The first exam for this class is on Wednesday April 25. The exam covers Chapters 0 and 1 of Sipser, which is up to and including the lecture on Monday, April 23.

1. Let \(L \) be the language over the alphabet \(\{0, 1\} \) defined by

\[
L = \{w \mid \text{w contains an even number of 0's and an odd number of 1's and does not contain the substring 01}\}.
\]

Give a DFA with at most five states that recognizes \(L \).

[[Optional extra practice: (1) Is there an NFA with fewer states that also recognizes \(L \)? (2) Give a regular expression that describes \(L \).]]

2. Consider the NFA \(N \) over the alphabet \(\{a, b, c\} \) with the state diagram shown below.

(a) Which of the following strings are accepted by \(N \)?
 i. abc
 ii. cbbc
 iii. cbbea
 iv. \(\varepsilon \)

(b) Write the formal definition for \(N \).

[[Optional extra practice: (1) Find a DFA that recognizes \(L(N) \). (2) Write a regular expression for \(L(N) \).]]

3. Give the setup and construction steps of a proof that shows that the class of regular languages over an alphabet \(\Sigma \) is closed under the operation \(\text{EvenLengthStringsOnly}(L) \), defined as

\[
\text{EvenLengthStringsOnly}(L) = \{w \in L \text{ such that } |w| \text{ is even}\}.
\]

Show how your general construction works on the example language of all binary strings containing the substring 101.
4. **True or False** Briefly justify each answer.

(a) For every DFA or NFA, M, over Σ, $L(M) = \Sigma^*$ if and only if each state is an accept state.

(b) Whenever R_1 is a regular expression over the alphabet $\{a, b, c\}$, $L((R_1 \circ \emptyset) \circ c) = L((R_1 \circ \varepsilon) \circ c)$.

(c) In a proof that a language is not regular using the Pumping Lemma, we should never choose $i = 1$. (Using the standard variables from the textbooks and class where s is the string, $s = xyz$, and i is the number of times to repeat y.)

(d) For all sets A, B, if A and B are both nonregular then $A \cap B$ is also nonregular.

(e) For all sets L, L is regular if and only if L^* is regular.