Today's learning goals

- Apply the Pumping Lemma in proofs of nonregularity
- Identify some nonregular sets

Exam 1 Wednesday April 25, in class
- Request special seats via Google form by end of class today!
- Seat assignments posted on Piazza tomorrow
- Review: in-class on Monday and Monday evening 7-9pm GH 242
Pumping Lemma

If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = x y z \) such that:

\[
\begin{align*}
\textbullet & \quad |y| > 0, \text{ and} \\
\textbullet & \quad \text{for each } i \geq 0, \ xy^i z \in A,
\end{align*}
\]

\(s \) can be cut into 3 pieces to give us lots of new strings.
Pumping Lemma

If A is recognized by DFA M with state diagram below, the computation of M on any string s of length $\geq p = |Q|$ must have a loop. Divide s into the strings labelling the path before the loop x, the loop itself y, and from the loop to the accept state z.\[x y z \in L(M) = A\]
\[x y^2 z \in L(M)\]
\[x z \in L(M)\]
\[x y^n y z \in L(M)\]
Pumping Lemma

- True for all (but not only) regular sets.
- Can't be used to prove that a set is regular
- Can be used to prove that a set is not regular … how?

Really? Finite sets?
Negation

flash-back to CSE 20 😊

• **Pumping lemma** "There is \(p \), where \(p \) is a pumping length for \(L \)"

• Given a specific number \(p \), it being a pumping length for \(L \) means

\[
\forall s \left(|s| \geq p \land s \in L \right) \rightarrow \exists x \exists y \exists z \left(s = xyz \land |y| > 0 \land |xy| \leq p \land \forall i \left(xy^i z \in L \right) \right)
\]

• So \(p \) not being a pumping length of \(L \) means

\[
\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left(\left(s = xyz \land |y| > 0 \land |xy| \leq p \right) \rightarrow \exists i \left(xy^i z \notin L \right) \right) \right)
\]
Proof strategy
To prove that a language L is not regular

• Consider arbitrary positive integer p.
• Prove that p isn't a pumping length for L.

• Conclude that L does not have any pumping length and is therefore not regular.
Pumping Lemma

If A is a regular language, then there is a number p \textit{(the pumping length)} where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $x y^i z \in A$,
- $|x y| \leq p$.

How does this apply to some known regular languages, e.g. the set of all strings, or \{a, ab\}
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Consider any positive integer \(p \). We wish to show that \(p \) is not pumping length for \(L \).

i.e. counterexample

\[S = 0^{p}1^{p} \]

Let \(S \in L \) with \(|S| > p \). i.e. cannot be pumped.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Consider an arbitrary positive integer. WTS p is not a pumping length for L.

How? Want to show that there is some string that *should* be pump'able but isn't.

Conclude that L does not have any pumping length and is therefore not regular.
Using the Pumping Lemma

L = \{0^n1^n \mid n \geq 0\} **CLAIM:** p is not a pumping length for L.

How would you prove the claim?

A. Find a string with length \(\geq p \) that is not in L.

B. Find a string with length \(< p\) that is in L.

C. None of the above.

\[\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L) \right) \right) \]
Using the Pumping Lemma

$L = \{0^n1^n \mid n \geq 0\}$ **CLAIM:** p is not a pumping length for L.

WTS

$$\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L) \right) \right)$$

Find a string s such that

1. $|s| \geq p$
2. s is in L
3. No matter how we cut s into three (viable) pieces, some related string obtained by repeating the middle part falls out of L.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \).
Consider the string

\[s = 0^p1^p. \]

1. \(|s| \geq p \)? \(\text{yes} : \ |s| = 2p \)
2. \(s \) is in \(L \)? \(\text{yes} \)
3. No matter how we cut \(s \) into three (viable) pieces, some related string obtained by repeating the middle part falls out of \(L \)?
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \). Consider the string \(s = 0^p1^p \). Then, \(s \) is in \(L \) and \(|s| = 2p \geq p \). Consider any division of \(s \) into three parts

\[s = xyz \text{ with } |y| > 0, \ |xy| \leq p. \]

Since \(|xy| \leq p \), \(x = 0^k \), \(y = 0^m \), \(z = 0^r1^p \) with \(k+m+r = p \), and since \(|y| > 0 \), \(m > 0 \). Picking \(i = 0 \): \(xy^iz = xz = 0^k0^r1^p = 0^{k+r}1^p \), which is not in \(L \) because \(k+r < p \). Thus, no \(p \) can be a pumping length for \(L \) and \(L \) is not regular.
Proof strategy

To prove that a language \(L \) is \textbf{not} regular

- Consider arbitrary positive integer \(p \).
- Prove that \(p \) isn't a pumping length for \(L \).

- Conclude that \(L \) does not have any pumping length and is therefore \textbf{not} regular.
Picking s

To complete proofs with Pumping Lemma, we will need to build (useful) examples of strings with length $\geq p$ that are in a given language.

- $L_1 = \{ a^m b^m a^n | m, n \geq 0 \}$
- $L_2 = \{ w w | w \text{ is a string over } \{0,1\} \}$
- $L_3 = \{ w w^R | w \text{ is a string over } \{0,1\} \}$

$S_1 = a^{p^2} b^{p^2} a^{p^2} \quad a^{p^2} b^{p^2} a^{p^2}$

$S_2 = 0^{p^2} 0^{p^2} \quad 0^{p^2} \cdot 1^{p^2}$

$S_3 = 0^{p^2} 1^{p^2} 0^{p^2} \quad 0^{p^2} 1^{p^2}$
Another example

Claim: The set \(\{ w w^R \mid w \text{ is a string over \{0,1\}} \} \) is not regular.

Proof: ... You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \) and \(s \) "can't be pumped" ... Consider \(i = \ldots \)

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p0^p, i = 2 \)
B. \(s = 0110, i = 0 \)
C. \(s = 0^p110^p, i = 1 \)
D. \(s = 1^p001^p, i = 3 \)
E. I don't know

\(|s| \geq p \)
How do we choose i?

Claim: The set \(\{0^j1^k \mid j,k \geq 0 \text{ and } j \geq k \} \) is not regular.

Proof: … You must pick s carefully: we want \(|s|\geq p\) and s in L and s "can't be pumped" … Consider i=…

Which s and i let us complete the proof?
A. s = 0^p1^p, i=2 B. s = 0^p1^p, i=p C. s = 0^p1^p, i=1 D. s = 0^p1^p, i=0 E. I don't know
Another example

Claim: The set \(\{a^mb^ma^n \mid m,n \geq 0\} \) is not regular.

Proof: … You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \) and \(s\) "can't be pumped"

Which choices of \(s \) could we have used in the proof?
A. \(s = a^pb^p \)
B. \(s = aba \)
C. \(s = a^pb^pa^p \)
D. \(s = b^p \)
E. None of the above
Do we always need Pumping Lemma?

Claim: The set

\{w \mid w \text{ has different } \#s \text{ of } 0\text{s and } 1\text{s OR has a } 1 \text{ before a } 0\}\n
is nonregular.

Proof:
Regular sets: not the end of the story

- Many **nice / simple / important** sets are not regular
- Limitation of the finite-state automaton model
 - Can't "count"
 - Can only remember finitely far into the past
 - Can't backtrack
 - Must make decisions in "real-time"
- We know computers are more powerful than this model…

Which conditions should we relax?
For next time

• Work on Practice questions for Exam 1

• **Exam 1** Wednesday April 25, in class
 • Request special seats via Google form by end of class today!
 • Seat assignments posted on Piazza tomorrow
 • Review: in-class on Monday and Monday evening 7-9pm GH 242