Today's learning goals

- Explain the limits of the class of regular languages
- Justify why the Pumping Lemma is true
- Apply the Pumping Lemma in proofs of nonregularity
- Identify some nonregular sets

 HW2 solutions on Piazza
 Group HW2 due Saturday
 Exam 1 next week
 - Practice Questions on Website
 - Review session on Monday
 - No Discussion sections on Day of Exam
All roads lead to … regular sets?

Are there any languages over \{0,1\} that are not regular?

A. Yes: a language that is recognized by an NFA but not any DFA.

B. Yes: there is some finite language over \{0,1\} that is not described by any regular expression.

C. No: all languages over \{0,1\} are regular because that's what it means to be a language.

D. No: for each set of strings over \{0,1\}, some DFA recognizes that set.

E. None of the above.
Proving nonregularity

How can we prove that a set is non-regular?

A. Try to design a DFA that recognizes it and, if the first few attempts don't work, conclude there is none that does.

B. Prove that it's a strict subset of some regular set.

C. Prove that it's the union of two regular sets.

D. Prove that its complement is not regular.

E. I don't know.
But where to start?
Counting languages

How many languages over \{0,1\} are there?

A. Finitely many because \{0,1\} is finite.
B. Finitely many because strings are finite.
C. Countably infinitely many because \{0,1\}^* is countably infinite.
D. Uncountably many because languages are in the power set of \{0,1\}^*.
E. None of the above.

\{100001001\} \{\varepsilon\} \{0\} \{1\} \{\varepsilon,0,1,00,01,10,11,000,\ldots\}

\{\text{Languages over } \{0,1\}\} = \{\text{set of strings over } \{0,1\}\} = \{\text{subset of } \{0,1\}\}
Counting regular languages over \{0,1\}

| \{ regular languages\} | ≤ | \{ regular expressions \} |

Each regular expression is a finite string over the alphabet \{0, 1, \varepsilon, \emptyset, (,), U, *\}

The set of strings over an alphabet is countably infinite.

Conclude: countably infinitely many regular languages.
Where we stand

Fact 1: There exist nonregular languages.

Fact 2: If we know some languages are nonregular, we can conclude others must be too. (cf. Discussion)

But, we don't have any specific examples of nonregular languages.

Yet.
Bounds on DFA

• in DFA, memory = states

• Automata can only "remember"…
 • …finitely far in the past
 • …finitely much information

• If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.
Example!

\{ 0^n1^n \mid n \geq 0 \}

What are some strings in this set?
\{ 0, 01, 001 \}

What are some strings not in this set?
\{ 10, 001 \}

Is this set finite or infinite?
Only infinite.

Compare to \(L(0^*1^*) = \{ 0^m1^n \mid m, n \geq 0 \} \supseteq \{ 0^n1^n \mid n \geq 0 \} \)

Design a DFA? NFA?
Example!

\{ 0^n1^n \mid n \geq 0 \}

What are some strings in this set?
What are some strings not in this set?
Is this set finite or infinite?

Compare to \(L(0^*1^*) \)
Design a DFA? NFA?
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA
Pumping

• Focus on computation path through DFA

Idea: if one long string is accepted, then many other similar strings have to be accepted too
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^i z \in A$,
- $|xy| \leq p$.
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^i z \in A$,
- $|xy| \leq p$.

Sipser p. 78 Theorem 1.70

states in DFA recognizing A

Transition labels along loop
Pumping Lemma

If A is recognized by DFA M with state diagram below, the computation of M on any string s of length $\geq p = |Q|$ must have a loop. Divide s into the strings labelling the path before the loop x, the loop itself y, and from the loop to the accept state z.
If A is recognized by DFA M with state diagram below, the computation of M on any string s of length \(\geq p = |Q| \) must have a loop. Divide s into the strings labelling the path before the loop \(x \), the loop itself \(y \), and from the loop to the accept state \(z \).

Which of the following is true?

A. \(|xy| \leq p\)
B. \(|y| > 0\)
C. \(xy^iz\) is accepted by M for all \(i \)
D. All of A,B,C
E. None of them
Pumping Lemma

• True for all (but not only) regular sets.

• Can't be used to prove that a set is regular
 Ex 1.49
• Can be used to prove that a set is not regular … how?
Negation

There is p, where p is a pumping length for L

Given a specific number p, it being a pumping length for L means

\[\forall s \left(|s| \geq p \land s \in L \right) \rightarrow \exists x \exists y \exists z \left(s = xyz \land |y| > 0 \land |xy| \leq p \land \forall i (xy^iz \in L) \right) \]

So p not being a pumping length of L means

\[\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L) \right) \right) \]
Proof strategy

To prove that a language L is not regular

• Consider arbitrary positive integer p.
• Prove that p isn't a pumping length for L.

• Conclude that L does not have any pumping length and is therefore not regular.
For next time

• Work on Group Homework 2 due Saturday

Pre class-reading for Friday: Examples 1.75, 1.77.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Consider an arbitrary positive integer. WTS p is not a pumping length for L.

How? Want to show that there is some string that *should* be pump'able but isn't.
Using the Pumping Lemma

L = \{0^n1^n \mid n \geq 0\} CLAIM: p is not a pumping length for L.

How would you prove the claim?

A. Find a string with length \(\geq p \) that is not in L.
B. Find a string with length <p that is in L.
C. None of the above.

\[\exists s \ (|s| \geq p \land s \in L \land \forall x \forall y \forall z \ ((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L)) \]
Using the Pumping Lemma

\[L = \{0^n1^n \mid n \geq 0\} \]

CLAIM: \(p \) is not a pumping length for \(L \).

WTS

\[\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i(xy^iz \notin L) \right) \right) \]

Find a string \(s \) such that
1. \(|s| \geq p \)
2. \(s \) is in \(L \)
3. No matter how we cut \(s \) into three (viable) pieces, some related string obtained by repeating the middle part falls out of \(L \).
Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \).
Consider the string

\[
s = 0^p1^p.
\]

1. \(|s| \geq p\) ?
2. \(s\) is in \(L\) ?
3. No matter how we cut \(s \) into three (viable) pieces, some related string obtained by repeating the middle part falls out of \(L \)?
Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \). Consider the string \(s = 0^p1^p \). Then, \(s \) is in \(L \) and \(|s| = 2p \geq p \). Consider any division of \(s \) into three parts
\[
s = xyz \text{ with } |y| > 0, |xy| \leq p.
\]
Since \(|xy| \leq p \), \(x = 0^k \), \(y = 0^m \), \(z = 0^r1^p \) with \(k + m + r = p \), and since \(|y| > 0, m > 0 \). Picking \(i = 0 \):
\[
xy^iz = xz = 0^k0^r1^p = 0^{k+r}1^p,
\]
which is not in \(L \) because \(k + r < p \). Thus, no \(p \) can be a pumping length for \(L \) and \(L \) is not regular.