Today's learning goals

- Explain the limits of the class of regular languages
- Justify why the Pumping Lemma is true
- Apply the Pumping Lemma in proofs of nonregularity
- Identify some nonregular sets
Proving nonregularity

How can we prove that a set is non-regular?

A. Try to design a DFA that recognizes it and, if the first few attempts don't work, conclude there is none that does.
B. Prove that it's a strict subset of some regular set.
C. Prove that it's the union of two regular sets.
D. Prove that its complement is not regular.
E. I don't know.
Counting languages

How many languages over \{0,1\} are there?

A. Finitely many because \{0,1\} is finite.
B. Finitely many because strings are finite.
C. Countably infinitely many because \{0,1\}\^* is countably infinite.
D. Uncountably many because languages are in the power set of \{0,1\}\^*.
E. None of the above.
Counting regular languages over \{0,1\}

\[| \{ \text{regular languages} \} | \leq | \{ \text{regular expressions} \} | \]

Each regular expression is a finite string over the alphabet

\[\{ 0, 1, \varepsilon, \varnothing, (,), U, * \} \]

The set of strings over an alphabet is countably infinite.

Conclude: countably infinitely many regular languages.
Where we stand

Fact 1: There exist nonregular languages.

Fact 2: If we know some languages are nonregular, we can conclude others must be too. (cf. Discussion)

But, we don't have any specific examples of nonregular languages.

Yet.
Bounds on DFA

- in DFA, memory = states

- Automata can only "remember"…
 - …finitely far in the past
 - …finitely much information

- If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.
Example!

\{ 0^n1^n \mid n \geq 0 \}

What are some strings in this set?

What are some strings not in this set?

Is this set finite or infinite?

*Compare to \(L(0^*1^*) \)*

Design a DFA? NFA?
Example!

\{ 0^n1^n \mid n \geq 0 \}

What are some strings in this set?
What are some strings not in this set?
Is this set finite or infinite?

Compare to \(L(0^*1^*) \)
Design a DFA? NFA?
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA

Idea: if one long string is accepted, then many other similar strings have to be accepted too.
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^i z \in A$,
- $|xy| \leq p$.

Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, \[s = x y z \] such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^iz \in A$,
- $|xy| \leq p$.

Sipser p. 78 Theorem 1.70
Pumping Lemma

If A is recognized by DFA M with state diagram below, the computation of M on any string s of length $\geq p = |Q|$ must have a loop. Divide s into the strings labelling the path before the loop x, the loop itself y, and from the loop to the accept state z.
Pumping Lemma

If A is recognized by DFA M with state diagram below, the computation of M on any string s of length $\geq p = |Q|$ must have a loop. Divide s into the strings labelling the path before the loop x, the loop itself y, and from the loop to the accept state z.

Which of the following is true?

A. $|xy| \leq p$
B. $|y| > 0$
C. xy^iz is accepted by M for all i
D. All of A,B,C
E. None of them
Pumping Lemma

• True for **all** (but not only) regular sets.

 • Can't be used to prove that a set **is** regular Ex 1.49
 • Can be used to prove that a set **is not** regular … how?
Negation

- Pumping lemma ``There is \(p \), where \(p \) is a pumping length for \(L \)"

- Given a specific number \(p \), it being a pumping length for \(L \) means

\[
\forall s \left(|s| \geq p \land s \in L \right) \rightarrow \exists x \exists y \exists z \left(s = xyz \land |y| > 0 \land |xy| \leq p \land \forall i (xy^i z \in L) \right)
\]

- So \(p \) not being a pumping length of \(L \) means

\[
\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^i z \notin L) \right) \right)
\]
Proof strategy

To prove that a language L is not regular

- Consider arbitrary positive integer p.
- Prove that p isn't a pumping length for L.
- Conclude that L does not have any pumping length and is therefore not regular.
For next time

• Work on Group Homework 2
 due Saturday

Pre class-reading for Friday: Examples 1.75, 1.77.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Consider an arbitrary positive integer. WTS p is not a pumping length for L.

How? Want to show that there is some string that *should* be pump'able but isn't.
Using the Pumping Lemma

$L = \{0^n1^n | n \geq 0\}$ CLAIM: p is not a pumping length for L.

How would you prove the claim?

A. Find a string with length $\geq p$ that is not in L.
B. Find a string with length $<p$ that is in L.
C. None of the above.

$\exists s \ (|s| \geq p \land s \in L \land \forall x \forall y \forall z \ ((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L)))$
Using the Pumping Lemma

$L = \{0^n1^n \mid n \geq 0\}$ **CLAIM:** p is not a pumping length for L.

WTS

$$\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L) \right) \right)$$

Find a string s such that

1. $|s| \geq p$
2. s is in L
3. No matter how we cut s into three (viable) pieces, some related string obtained by repeating the middle part falls out of L.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \).

Consider the string

\[s = 0^p1^p. \]

1. \(|s| \geq p \) ?
2. \(s \) is in \(L \) ?
3. No matter how we cut \(s \) into three (viable) pieces, some related string obtained by repeating the middle part falls out of \(L \) ?
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Consider an arbitrary positive integer. WTS p is not a pumping length for L. Consider the string $s = 0^p1^p$. Then, s is in L and $|s| = 2p \geq p$. Consider any division of s into three parts $s = xyz$ with $|y|>0$, $|xy|\leq p$.

Since $|xy|\leq p$, $x = 0^k$, $y = 0^m$, $z = 0^r1^p$ with $k+m+r = p$, and since $|y| > 0$, $m>0$. Picking $i=0$: $xy^iz = xz = 0^k0^r1^p = 0^{k+r}1^p$, which is not in L because $k+r < p$. Thus, no p can be a pumping length for L and L is not regular.