CSE 105
THEORY OF COMPUTATION

Spring 2018

http://cseweb.ucsd.edu/classes/sp18/cse105-ab/
Today's learning goals

- Prove closure properties of the class of regular languages
- Apply closure properties to conclude that a language is or isn't regular
Regular languages Sipser p. 35 Def 1.5

- DFA M over the alphabet Σ
 - For each string w over Σ, M either accepts w or rejects w
 - The language recognized by M is the set of strings M accepts
 a.k.a. the language of M is the set of strings M accepts
 a.k.a. $L(M) = \{ w \mid w$ is a string over Σ and M accepts $w\}$

A language is regular iff there is some finite automaton that recognizes exactly it.
Justification?

To prove that the DFA we build, M, actually recognizes the language L

\[\text{WTS } L(M) = L \]

(1) Is every string accepted by M in L?

(2) Is every string from L accepted by M?

or contrapositive version: Is every string rejected by M not in L?
A useful (optional) bit of terminology

When is a string accepted by a DFA?

Computation of M on w: *where do we land when start at q_0 and read each symbol of w one-at-a time?*

M = (Q, Σ, δ, q_0, F)

\[\delta^* ((q, w)) = \]
Building DFA

Formally,
{\(w \mid w \) contains the substring ab}

\{\(w \mid w \) doesn't contain the substring ab\}
Complementation

Claim: If A is a regular language over Σ, then so is \overline{A}

aka "the class of regular languages is closed under complementation"
Complementation

Claim: If A is a regular language over Σ, then so is \overline{A}
aka "the class of regular languages is closed under complementation"

Proof: Let A be a regular language. Then there is a DFA $M=(Q,\Sigma,\delta,q_0,F)$ such that $L(M) = A$. We want to build a DFA whose language is \overline{A}. Define

$$M' = \ ?$$

Claim of Correctness $L(M') = \overline{A}$

Proof of claim…
Why closure proofs?

• General technique of proving a new language is regular
• Stretch the power of the model
• Puzzle!
Set operations

Input language (s) \rightarrow OPERATION \rightarrow Output language

The class of regular languages is closed under …

<table>
<thead>
<tr>
<th>Operation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementation</td>
<td>✔</td>
</tr>
<tr>
<td>Kleene star</td>
<td>?</td>
</tr>
<tr>
<td>Concatenation</td>
<td>?</td>
</tr>
<tr>
<td>Union</td>
<td>?</td>
</tr>
<tr>
<td>Intersection</td>
<td>?</td>
</tr>
<tr>
<td>Set difference</td>
<td>?</td>
</tr>
</tbody>
</table>
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof:

What are we proving here?

A. For any set A, if A is regular then so is $A \cup A$.
B. For any sets A and B, if $A \cup B$ is regular, then so is A.
C. For two DFAs M_1 and M_2, $M_1 \cup M_2$ is regular.
D. None of the above.
E. I don't know.
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. WTS that $A_1 \cup A_2$ is regular.

Goal: build a machine that recognizes $A_1 \cup A_2$.
Goal: build a machine that recognizes $A_1 \cup A_2$.

Strategy: use machines that recognize each of A_1, A_2.

Accept if either (or both) accepts

HOW?
"Run in parallel"

Building \(M = (Q_1 \times Q_2, \Sigma, \delta, ?, ?) \)

Given \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \)

Start state:

Accept state(s):

Transition function:
"Run in parallel"

Building $M = (Q_1 \times Q_2, \Sigma, \delta, ?, ?)$

Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

Start state:

Accept state(s):

Transition function:

The set of accepting states for M is

A. $F_1 \times F_2$
B. $\{ (r,s) \mid r \text{ is in } F_1 \text{ and } s \text{ is in } F_2 \}$
C. $\{ (r,s) \mid r \text{ is in } F_1 \text{ or } s \text{ is in } F_2 \}$
D. $F_1 \cup F_2$
E. I don't know.
"Run in parallel"

Building $M = (Q_1 \times Q_2, \Sigma, \delta, ?, ?)$

Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

Start state:

Accept state(s):

Transition function:
Proof: Let A_1, A_2 be any two regular languages over Σ. Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ such that $L(M_1) = A_1$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ such that $L(M_2) = A_2$.

WTS that $A_1 \cup A_2$ is regular.

Define
$M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), \{(r, s) \in Q_1 \times Q_2 \mid r \in F_1 \text{ or } s \in F_2\})$
with $\delta(((r, s), x)) = (\delta_1(r, x), \delta_2(s, x))$ for (r, s) in $Q_1 \times Q_2$, x in Σ.

Why does $L(M) = A_1 \cup A_2$?
Aside: Intersection

• How would you prove that the class of regular languages is closed under intersection?
• Can you think of more than one proof strategy?

\[A \cap B = \{ x \mid x \text{ in } A \text{ and } x \text{ in } B \} \]
General proof structure/strategy

Theorem: For any L over Σ, if L is regular then the result of some operation on L is also regular.

Proof:

Given name variables for sets, machines assumed to exist.

WTS state goal and outline plan.

Construction using objects previously defined + new tools working towards goal. Give formal definition and explain.

Correctness prove that construction works.

Conclusion recap what you've proved.
Before/For next time

• Work on Individual Homework 1 due Tuesday
• Work on Group Homework 1 due Saturday

Pre class-reading for Wednesday:
- Page 48 (Figure 1.27 and description below it)
- Example 1.35 on page 52
Payoff

\{ w \mid w \text{ contains neither the substrings } \text{aba} \text{ nor } \text{baab} \}

Is this a regular set?
Payoff

\{ w \mid w \text{ contains neither the substrings } aba \text{ nor } baab \}

Is this a regular set?

A = \{ w \mid w \text{ contains } aba \text{ as a substring} \}
B = \{ w \mid w \text{ contains } baab \text{ as a substring} \}

\overline{A \cap \overline{B}} = \overline{A \cup B}