CSE 105
THEORY OF COMPUTATION

Spring 2018

Discussion today: Ch 4 + 5
Group HW6 due Saturday
Review Quiz due Sunday
* Group HW7 due Tuesday
Optional HW8 - Discussion wk 10

http://cseweb.ucsd.edu/classes/sp18/cse105-ab/

Review session Wednesday evening.
Today's learning goals

- Define and explain core examples of computational problems, include A^{**}, E^{**}, EQ^{**}, $HALT_{TM}$ (for ** either DFA or TM)
- Explain what it means for one problem to reduce to another
- Define computable functions, and use them to give mapping reductions between computational problems.
<table>
<thead>
<tr>
<th>Decidable</th>
<th>Undecidable but recognizable</th>
<th>Undecidable and unrecognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>A_{TM}^C</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization
If problem X is no harder than problem Y
 ...and if Y is **decidable**
 ...then X must also be **decidable**

If problem X is no harder than problem Y
 ...and if X is **undecidable**
 ...then Y must also be **undecidable**

“Problem X is no harder than problem Y” means
“Can convert questions about membership in X to questions about membership in Y”
Mapping reduction

Problem A is **mapping reducible** to problem B means there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings x in Σ^*

$$x \text{ is in } A \iff f(x) \text{ is in } B$$

Computable function?

A function $f: \Sigma^* \rightarrow \Sigma^*$ is **computable** iff there is some **Turing machine** such that, for each x, on input x halts with exactly $f(x)$ followed by all blanks on the tape.
Computable functions (aka maps)

Which of the following functions are computable?

A. The string \(x \) maps to the string \(xx \).
B. The string \(<M> \) (where \(M \) is a TM) maps to \(<M'> \) where \(M' \) is the Turing machine that acts like \(M \) does, except that if \(M \) tries to reject, \(M' \) goes into a loop; strings that are not the codes of TMs map to \(\epsilon \).
C. The string \(x \) maps to \(y \), where \(x \) is the binary representation of the number \(n \) and \(y \) is the binary representation of the number \(2^n \).
D. All of the above.
E. None of the above.
The halting problem!

\[\text{HALT}_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

\[A_{TM} = \{ <M, w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]

How is \text{HALT}_{TM} related to \text{A}_{TM}?

A. They're the same set.
B. \text{HALT}_{TM} is a subset of \text{A}_{TM}
C. \text{A}_{TM} is a subset of \text{HALT}_{TM}
D. They have the same type of elements but no other relation.
E. I don't know.
The halting problem!

\[\text{HALT}_{TM} = \{ <M,w> \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

\[A_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]

But subset inclusion doesn't determine difficulty!
The halting problem!

\[\text{HALT}_\text{TM} = \{ <M,w> | M \text{ is a TM and } M \text{ halts on input } w \} \]

\[A_{\text{TM}} = \{ <M,w> | M \text{ is a TM and } w \text{ is in } L(M) \} \]

Goal: build function \(f: \Sigma^* \to \Sigma^* \) such that for every string \(x \),
\[x \text{ is in } A_{\text{TM}} \text{ iff } f(x) \text{ is in } \text{HALT}_{\text{TM}} \]

i.e. \(A_{\text{TM}} \) reduces to \(\text{HALT}_{\text{TM}} \)
Reducing A_{TM} to $HALT_{TM}$

Sipser Example 5.24

Desired function by cases:

- If $x = <M, w>$ and w is in $L(M)$: map to $<M', w'>$ in $HALT_{TM}$

- If $x = <M, w>$ and w is not in $L(M)$: map to $<M', w'>$ not in $HALT_{TM}$

- If $x \neq <M, w>$: map to some string not in $HALT_{TM}$
Reducing A_{TM} to $HALT_{TM}$

Sipser Example 5.24

Desired function by cases:

• If $x = <M,w>$ and w is in $L(M)$: map to $<M’, w’>$ in $HALT_{TM}$

• If $x = <M,w>$ and w is not in $L(M)$: map to $<M’, w’>$ not in $HALT_{TM}$

• If $x \neq <M,w>$: map to some string not in $HALT_{TM}$

Pick some specific string constant not in $HALT_{TM}$
Reducing A_{TM} to $HALT_{TM}$

Sipser Example 5.24

Define *computable* function:

F = “On input x:
1. Type-check whether $x = <M, w>$ for some TM M, and string w. If not, output $const_{out}$.
2.
3.
4. ”

F is defined by high-
level description of TM:
each step must be
algorithmic!
Reducing A_{TM} to $HALT_{TM}$

Sipser Example 5.24

Define computable function:

$$F: \Sigma^* \rightarrow \{\#, \square\}$$

$F = \text{“On input } x:\text{ “}$

1. Type-check whether $x = <M,w>$ for some TM M, and string w. If not, output constant.
2. Simulate M on w.
3. If accepts, accept. If rejects, reject.
4. …

F is defined by high-level description of TM: each step must be algorithmic!
Reducing A_{TM} to $HALT_{TM}$

Sipser Example 5.24

Define **computable** function:

$F = \text{"On input } x:\text{ do }$

1. Type-check whether $x = <M, w>$ for some TM M, and string w. If not, output $\text{const}_{\text{out}}$.
2. Construct the following machine M'

 $M' = \text{"On input } x:\text{ do }$

 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.
3. Output $<M', w>$

$\langle M' \rangle = \langle \langle M \rangle \rangle$

i.e. potentially $x \in A_{TM}$

F is defined by high-level description of TM: each step must be algorithmic!
Reducing A_{TM} to $HALT_{TM}$

Example 5.24

Check how function behaves by cases:

- If $x = \langle M, w \rangle$ and w is in $L(M)$: map to $\langle M', w' \rangle$ in $HALT_{TM}$?
 - M accepts w.
 - M' loops on w for an infinite number of steps.
 - So, $\langle M', w' \rangle$ is not in $HALT_{TM}$.

- If $x = \langle M, w \rangle$ and w is not in $L(M)$: map to $\langle M', w' \rangle$ not in $HALT_{TM}$?
 - M rejects w, by construction M' loops on w.
 - $\langle M', w' \rangle$ is not in $HALT_{TM}$.

- If $x \neq \langle M, w \rangle$: map to some string not in $HALT_{TM}$?

i.e. $x \in A_{TM}$ if $f(x) \in HALT_{TM}$.
Other direction?

Goal: build function that $f: \Sigma^* \rightarrow \Sigma^*$ such that for every string x,

x is in HALT_{TM} iff $f(x)$ is in A_{TM}

What function should be used for $f(x)$ in the reduction?

A. Use the function F from previous reduction
B. Use the inverse of the function F from previous reduction
C. Use a different computable function
D. Impossible to find a computable function that works!
Goal: Computable \(F_2 : \Sigma^* \rightarrow \Sigma^* \)

\(X \in \text{HALT}_T \) if \(F_2(x) \in \text{ATM} \)

\[
\begin{cases}
X = <M, w> \\
\text{where } M \text{ halts on } w
\end{cases}
\begin{cases}
X = <M, w> \text{ where } M \text{ loops on } w
\end{cases}
\]

output \(c_t \), \((c_t \notin \text{ATM})\)

\(F_2 = "\text{On input } x, \)"

1. Typecheck; if \(x \neq <M, w> \), output \(c_t \).
2. 6w: \(x = <M, w> \)
3. Build \(M' = "\text{On input } y, \)"
4. Output \(<M', w> "\)"
Next time

Pre-class reading Example 5.24, Theorems 5.22