Today's learning goals

- Define and explain core examples of computational problems, include A^{**}, E^{**}, EQ^{**}, $HALT_{TM}$ (for ** either DFA or TM)
- Explain what it means for one problem to reduce to another
- Define computable functions, and use them to give mapping reductions between computational problems.
<table>
<thead>
<tr>
<th>Decidable</th>
<th>Undecidable but recognizable</th>
<th>Undecidable and unrecognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>A_{TM}^c</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!
Diagonalization
Idea

If problem X is no harder than problem Y
 …and if Y is **decidable**
 …then X must also be **decidable**

If problem X is no harder than problem Y
 …and if X is **undecidable**
 …then Y must also be **undecidable**

“Problem X is no harder than problem Y” means
“Can convert questions about membership in X to questions about membership in Y”
Problem A is **mapping reducible** to problem B means there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings x in Σ^*

\[
\text{x is in A iff } f(x) \text{ is in B}
\]

Computable function?
A function $f: \Sigma^* \rightarrow \Sigma^*$ is **computable** iff there is some Turing machine such that, for each x, on input x halts with exactly $f(x)$ followed by all blanks on the tape
Which of the following functions are computable?

A. The string x maps to the string xx.

B. The string $<M>$ (where M is a TM) maps to $<M’>$ where $M’$ is the Turing machine that acts like M does, except that if M tries to reject, $M’$ goes into a loop; strings that are not the codes of TMs map to ε.

C. The string x maps to y, where x is the binary representation of the number n and y is the binary representation of the number 2^n.

D. All of the above.

E. None of the above.
The halting problem!

\[\text{HALT}_{\text{TM}} = \{ <M,w> | M \text{ is a TM and } M \text{ halts on input } w \} \]

\[A_{\text{TM}} = \{ <M,w> | M \text{ is a TM and } w \text{ is in } L(M) \} \]

How is \(\text{HALT}_{\text{TM}} \) related to \(A_{\text{TM}} \)?

A. They're the same set.
B. \(\text{HALT}_{\text{TM}} \) is a subset of \(A_{\text{TM}} \)
C. \(A_{\text{TM}} \) is a subset of \(\text{HALT}_{\text{TM}} \)
D. They have the same type of elements but no other relation.
E. I don't know.
The halting problem!

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

\[A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \text{ is in } L(M) \} \]

But subset inclusion doesn't determine difficulty!
The halting problem!

\[\text{HALT}_\text{TM} = \{ <M,w> \mid \text{M is a TM and M halts on input } w \} \]

\[\text{A}_{\text{TM}} = \{ <M,w> \mid \text{M is a TM and } w \text{ is in } L(M) \} \]

Goal: build function that \(f : \Sigma^* \rightarrow \Sigma^* \) such that for every string \(x \),

\[x \text{ is in } \text{A}_{\text{TM}} \iff f(x) \text{ is in } \text{HALT}_{\text{TM}} \]
Reducing A_{TM} to $HALT_{TM}$

Desired function by cases:

- If $x = <M,w>$ and w is in $L(M)$: map to $<M', w'>$ in $HALT_{TM}$

- If $x = <M,w>$ and w is not in $L(M)$: map to $<M', w'>$ not in $HALT_{TM}$

- If $x \neq <M,w>$: map to some string not in $HALT_{TM}$
Reducing A_{TM} to $HALT_{TM}$

Sipser Example 5.24

Desired function by cases:

- If $x = <M,w>$ and w is in $L(M)$: map to $<M', w'>$ in $HALT_{TM}$

- If $x = <M,w>$ and w is not in $L(M)$: map to $<M', w'>$ not in $HALT_{TM}$

- If $x \neq <M,w>$: map to some string not in $HALT_{TM}$
 Pick some specific string constant not in $HALT_{TM}$
Reducing A_{TM} to $HALT_{TM}$

Sipser Example 5.24

Define **computable** function:

$F =$ “On input x:
1. Type-check whether $x = <M,w>$ for some TM M, and string w. If not, output $const_{out}$.
2. ...
3. ...
4. ”

F is defined by high-level description of TM: each step must be algorithmic!
Reducing A_{TM} to HALT_{TM}

Sipser Example 5.24

Define \textit{computable} function:

$F =$ “On input x:
1. Type-check whether $x = \langle M, w \rangle$ for some TM M, and string w. If not, output $\text{const}_{\text{out}}$.
2. Simulate M on w.
3. If accepts, accept. If rejects, reject.
4. …. ”

F is defined by high-level description of TM: each step must be algorithmic!
Reducing A_{TM} to $HALT_{TM}$

Sipser Example 5.24

Define *computable* function:

F = “On input x:
1. Type-check whether $x = <M,w>$ for some TM M, and string w. If not, output $\text{const}_{\text{out}}$.
2. Construct the following machine M'
 M' = “On input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.”
3. Output $<M', w>$”

F is defined by high-level description of TM: each step must be algorithmic!
Reducing A_{TM} to $HALT_{TM}$

Check how function behaves by cases:

- If $x = <M,w>$ and w is in $L(M)$: map to $<M', w'>$ in $HALT_{TM}$?

- If $x = <M,w>$ and w is not in $L(M)$: map to $<M', w'>$ not in $HALT_{TM}$?

- If $x \neq <M,w>$: map to some string not in $HALT_{TM}$?
Other direction?

Goal: build function that $f: \Sigma^* \rightarrow \Sigma^*$ such that for every string x,

$$x \text{ is in } \text{HALT}_{TM} \iff f(x) \text{ is in } \text{A}_{TM}$$

What function should be used for $f(x)$ in the reduction?
A. Use the function F from previous reduction
B. Use the inverse of the function F from previous reduction
C. Use a different computable function
D. Impossible to find a computable function that works!
Next time

Pre-class reading Example 5.24, Theorems 5.22