Today's learning goals

• Define and explain core examples of computational problems, including A^{**}, E^{**}, EQ^{**}, $HALT_{TM}$ (for ** either DFA or TM)
• Explain what it means for one problem to reduce to another
• Define computable functions, and use them to give mapping reductions between computational problems

HW 6 available - due Tues/Sat
Interim report glitch will be fixed for next coming soon
\[A_{TM} = \{ <M,w> | M \text{ is a TM and } w \text{ is in } L(M) \} \]

Define the TM \(N \) = "On input \(<M,w> \):
1. Simulate \(M \) on \(w \).
2. If \(M \) accepts, accept. If \(M \) rejects, reject."

- A. \(N \) rejects \(<M_1, 0> \)
- B. \(N \) accepts \(<M_2> \)
- C. \(N \) rejects \(<M_4, 1> \)
- D. \(N \) recognizes \(A_{TM} \)
- E. More than one of the above.
A_{TM}

$A_{DFA} = \{ <B,w> \mid B \text{ is a DFA and } w \text{ is in } L(B) \}$

Decider for this set simulates arbitrary DFA

$A_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \}$

Simulating arbitrary TM gives us $\not{=} \not{\text{not}}$ a decider!
Diagonalization proof: A_{TM} not decidable

Sipser p. 207

Assume, towards a contradiction, that it is.

Call M_{ATM} the decider for A_{TM}:

For every TM M and every string w,

- Computation of M_{ATM} on $<M,w>$ halts and accepts if w is in $L(M)$.
- Computation of M_{ATM} on $<M,w>$ halts and rejects if w is not in $L(M)$.

$M_{ATM} \neq N$
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM D = "On input $<M>$:

1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."
Diagonalization proof: A_{TM} not decidable

Sipser 4.11

Assume, towards a contradiction, that M_{ATM} decides A_{TM}.

Define the TM $D =$ "On input $<M>$:

1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Which of the following computations halt?

A. Computation of D on $<M_1>$
B. Computation of D on $<M_4>$
C. Computation of D on $<D>$
D. All of the above.
E. None of the above.
Assume, towards a contradiction, that M_{ATM} decides A_{TM}.

Define the TM $D =$ "On input $<M>$:
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Consider running D on input $<D>$. Because D is a decider:
- either computation halts and accepts...
- or computation halts and rejects....
Case 1: D running on $\langle D \rangle$

i.e. $D \in L(D)$

i.e. $\langle D, \langle D \rangle \rangle \in \text{ATM}$

i.e. ATM accepts $\langle D, \langle D \rangle \rangle$.

Tracing D on $\langle D \rangle$.

1. Run ATM $\langle D, \langle D \rangle \rangle$, and by case assumption accepts.
2. Since ATM's counter accepted, D rejects.

CONTRADICTION!
Case 2: D rejects <D>
so <D> \not\in L(CD)
so <D, <D>> \not\in ATM
so \text{ATM rejects } <D, <D>>.

Tracing D on <D> using def of D.

Step 1: Run ATM on <D, <D>>
By case assumption, ATM rejects.
Step 2: Since ATM rejects, D accepts.

\text{CONTRADICTION!}
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{TM} decides A_{TM}.

Define the TM $D = \text{"On input } <M>:\n\begin{enumerate}
\item Run M_{TM} on $<M, <M>>$.
\item If M_{TM} accepts, reject; if M_{TM} rejects, accept.
\end{enumerate}$

Consider running D on input $<D>$. Because D is a decider:

- either computation halts and accepts
- or computation halts and rejects

Diagonalization???

Self-reference

"Is $<D>$ an element of $L(D)$?"
\[
A_{TM} = \{<M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \}
\]

Define the TM \(N = \) "On input \(<M,w> \):
\begin{enumerate}
\item Simulate \(M \) on \(w \).
\item If \(M \) accepts, accept. If \(M \) rejects, reject.
\end{enumerate}
\(N \) is a Turing machine that \text{recognizes} \(A_{TM} \).

\textbf{No} Turing machine \text{decides} \(A_{TM} \).
A_{TM}

- Recognizable
- Not decidable

Fact (Theorem 4.22): A language is decidable iff it and its complement are both recognizable.

Corollary 4.23: The complement of A_{TM} is unrecognizable.
<table>
<thead>
<tr>
<th>Decidable</th>
<th>Recognizable (and not decidable)</th>
<th>Co-recognizable (and not decidable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>A_{TM}^c</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization
Do we have to diagonalize?
Idea

If problem X is no harder than problem Y
...and if Y is easy
...then X must also be easy
Idea

If problem X is no harder than problem Y
…and if X is hard
…then Y must also be hard
Idea

If problem X is no harder than problem Y
...and if Y is **decidable**
...then X must also be **decidable**

If problem X is no harder than problem Y
...and if X is **undecidable**
...then Y must also be **undecidable**
If problem X is no harder than problem Y
...and if Y is **decidable**
...then X must also be **decidable**

If problem X is no harder than problem Y
...and if X is **undecidable**
...then Y must also be **undecidable**

“Problem X is no harder than problem Y” means
“Can convert questions about membership in X to questions about membership in Y”
Problem A is **mapping reducible** to problem B means there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings x in Σ^*

$$x \text{ is in } A \iff f(x) \text{ is in } B$$
Mapping reduction

Problem A is **mapping reducible** to problem B means there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings x in Σ^*

$$x \text{ is in } A \text{ iff } f(x) \text{ is in } B$$

Computable function?

A function $f: \Sigma^* \rightarrow \Sigma^*$ is **computable** iff there is some Turing machine such that, for each x, on input x halts with exactly $f(x)$ followed by all blanks on the tape.
Computable functions (aka maps)

Which of the following functions are computable?

A. The string x maps to the string xx.

B. The string $<M>$ (where M is a TM) maps to $<M'>$ where M' is the Turing machine that acts like M does, except that if M tries to reject, M' goes into a loop; strings that are not the codes of TMs map to ε.

C. The string x maps to y, where x is the binary representation of the number n and y is the binary representation of the number 2^n.

D. All of the above.

E. None of the above.
Next time

How do reductions help us determine decidability / undecidability / recognizability / unrecognizability?