Today's learning goals

- Define and explain core examples of computational problems, including A^{**}, E^{**}, EQ^{**}, $HALT_{TM}$ (for ** either DFA or TM)
- Explain what it means for one problem to reduce to another
- Define computable functions, and use them to give mapping reductions between computational problems

HW 6 available - due Tues/Sat
Interim report - fix to be posted soon
\[A_{TM} = \{ <M, w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]

Define the TM \(N \) = "On input \(<M, w> \):
1. Simulate \(M \) on \(w \).
2. If \(M \) accepts, accept. If \(M \) rejects, reject."

A. \(N \) rejects \(<M_1, 0> \)
B. \(N \) accepts \(<M_2> \)
C. \(N \) rejects \(<M_4, 1> \)
D. \(N \) recognizes \(A_{TM} \)
E. More than one of the above.
\[A_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]

Decider for this set simulates arbitrary DFA

\[A_{DFA} = \{ <B,w> \mid B \text{ is a DFA and } w \text{ is in } L(B) \} \]

Simulation jives \textcolor{red}{N} recognizer but not \textcolor{red}{a} \textcolor{red}{decider}!
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that it is.

Call M_{ATM} the decider for A_{TM}:

For every TM M and every string w,

- Computation of M_{ATM} on $<M,w>$ halts and accepts if w is in $L(M)$.
- Computation of M_{ATM} on $<M,w>$ halts and rejects if w is not in $L(M)$.

$M_{ATM} \neq N$
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM D = "On input $\langle M \rangle$:
1. Run M_{ATM} on $\langle M, \langle M \rangle \rangle$. \hspace{1cm} \text{i.e. ask whether $\langle M \rangle \in L(M)$}
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D =$ "On input $<M>$:
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Which of the following computations halt?

A. Computation of D on $<M_1>$
B. Computation of D on $<M_4>$
C. Computation of D on $<D>$
D. All of the above.
E. None of the above.
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that M_{ATM} decides A_{TM}.

Define the TM $D =$ "On input $<M>$:

1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Consider running D on input $<D>$. Because D is a decider:

- either computation halts and accepts …
- or computation halts and rejects …
Case 1: D running on <D> halts and accepts.

i.e. <D> ∈ L(D)

i.e. <D, <D>> ∈ ATM

i.e. MATM on <D, <D>> accepts

Trace comp of D on <D>:

in step 1 run MATM on <D, <D>>

in step 2 we'll see that MATM accepts

so D rejects

CONTRADICTION!
Case 2: D running on \(\langle D \rangle\) halts \& rejects

i.e. \(\langle D \rangle \notin L(D)\)

i.e. \(\langle D, \langle D \rangle \rangle \notin A_{TM}\)

i.e. \(A_{TM}\) on \(\langle D, \langle D \rangle \rangle\) rejects.

Trace \(D\) on input \(\langle D \rangle\)

in step 1, run \(A_{TM}\) on \(\langle D, \langle D \rangle \rangle\)

and b/c of assumption, see \(A_{TM}\) rejects. In step 2, therefore, D will accept.

CONTRADICTION!
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{TM} decides A_{TM}.

Define the TM $D = \text{"On input } <M>:\
1. \text{Run } M_{TM} \text{ on } <M, <M>>.\
2. \text{If } M_{TM} \text{ accepts, reject; if } M_{TM} \text{ rejects, accept.}"

Consider running D on input $<D>$. Because D is a decider:
- either computation halts and accepts …
- or computation halts and rejects …
Define the TM \(N = "On \text{ input} <M,w>: \)
1. Simulate \(M \) on \(w \).
2. If \(M \) accepts, accept. If \(M \) rejects, reject."

\(N \) is a Turing machine that recognizes \(A_{TM} \).

No Turing machine decides \(A_{TM} \).
\(A_{\text{TM}} \)

- Recognizable
- Not decidable

Fact (Theorem 4.22): A language is decidable iff it and its complement are both recognizable.

Corollary 4.23: The complement of \(A_{\text{TM}} \) is **unrecognizable**.
<table>
<thead>
<tr>
<th>Decidable</th>
<th>Recognizable (and not decidable)</th>
<th>Co-recognizable (and not decidable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>A_{TM}^C</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization
Do we have to diagonalize?
If problem X is no harder than problem Y
...and if Y is easy
...then X must also be easy
If problem X is no harder than problem Y
…and if X is hard
…then Y must also be hard
If problem X is no harder than problem Y
...and if Y is **decidable**
...then X must also be **decidable**

If problem X is no harder than problem Y
...and if X is **undecidable**
...then Y must also be **undecidable**
If problem X is no harder than problem Y
...and if Y is **decidable**
...then X must also be **decidable**

If problem X is no harder than problem Y
...and if X is **undecidable**
...then Y must also be **undecidable**

“Problem X is no harder than problem Y” means
“Can convert questions about membership in X to questions about membership in Y”
Problem A is mapping reducible to problem B means there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings x in Σ^*

\[
x \text{ is in } A \quad \text{iff} \quad f(x) \text{ is in } B
\]
Problem A is mapping reducible to problem B means there is a computable function \(f: \Sigma^* \rightarrow \Sigma^* \) such that for all strings \(x \) in \(\Sigma^* \)

\[
x \text{ is in } A \quad \text{iff} \quad f(x) \text{ is in } B
\]

Computable function?

A function \(f: \Sigma^* \rightarrow \Sigma^* \) is computable iff there is some Turing machine such that, for each \(x \), on input \(x \) halts with exactly \(f(x) \) followed by all blanks on the tape
Computable functions (aka maps)

Which of the following functions are computable?

A. The string \(x \) maps to the string \(xx \).

B. The string \(<M> \) (where \(M \) is a TM) maps to \(<M'> \) where \(M' \) is the Turing machine that acts like \(M \) does, except that if \(M \) tries to reject, \(M' \) goes into a loop; strings that are not the codes of TMs map to \(\varepsilon \).

C. The string \(x \) maps to \(y \), where \(x \) is the binary representation of the number \(n \) and \(y \) is the binary representation of the number \(2^n \)

D. All of the above.

E. None of the above.
Next time

How do reductions help us determine decidability / undecidability / recognizability / unrecognizability?

Monday is Memorial Day!