Today's learning goals

- Explain what it means for a problem to be decidable.
- Justify the use of encoding.
- Give examples of decidable problems.
- Prove that a computational problem about DFA, NFA, RegExp, etc. is decidable.

Group HW5 due Saturday
Practice Qs for exam 2 on website - Review Session Mon
Recommended additional problems on Piazza
Extra OH early next week
Computational problems over Σ

A_{DFA} "Is a given string accepted by a given DFA?"
\{ $<B, w>$ | B is a DFA, w in Σ^*, and w is in $L(B)$ \}

E_{DFA} "Is the language of a DFA empty?"
\{ $<A>$ | A is a DFA over Σ, $L(A)$ is empty \}

EQ_{DFA} "Are the languages of two given DFAs equal?"
\{ $<A, B>$ | A and B are DFA over Σ, $L(A) = L(B)$ \}
Computational problems

A computational problem is **decidable** iff the language encoding the problem instances is decidable.

We won't specify the encoding.

To prove decidable, define $\text{TM } M = \text{"On input } <\ldots>,

1.

2. \ldots \text{"}

Show (1) $L(M) = \ldots$ and (2) M is a decider.
Proving decidability

Claim: \(E_{DFA} \) is decidable

Proof: WTS that \(\{ <A> \mid A \text{ is a DFA over } \Sigma, L(A) \text{ is empty} \} \) is decidable.

Informally: what do you look for in the state diagram of a DFA to determine if it accepts *at least one* string?

\[F = \emptyset \text{ is suff but not nec.} \]

\[\rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \ldots \rightarrow 0 \]

no accept state is reachable from 0.
Proving decidability

Claim: E_{DFA} is decidable

Proof: WTS that \{ $<A>$ | A is a DFA over Σ, $L(A)$ is empty \} is decidable.

Test cases:

- e.g. $< \text{B} >$ is in E_{DFA}; $< \text{A} >$ is not in E_{DFA}

TM deciding E_{DFA} should accept and should reject
Proving decidability

Claim: E_{DFA} is decidable
Proof: WTS that \{ $\langle A \rangle$ | A is a DFA over Σ, $L(A)$ is empty \} is decidable.

Step 1: construction

Idea: breadth-first search in state diagram to look for paths to F
Proving decidability

Claim: E_{DFA} is decidable
Proof: WTS that $\{ <A> | A$ is a DFA over Σ, $L(A)$ is empty $\}$ is decidable.

Step 1: construction
Idea: breadth-first search in state diagram to look for paths to F
Define TM M_2 by: $M_2 = \langle$On input $<A>$:
1. Check whether input is a valid encoding of a DFA, if not, reject.
2. Mark the start state of A.
3. Repeat until no new states get marked:
 i. Loop over states of A and mark any unmarked state that has an incoming edge from a marked state.
4. If no final state of A is marked, accept; otherwise, reject.\rangle
Proving decidability

Step 2: correctness proof

WTS (1) \(L(M_2) = E_{DFA} \) and (2) \(M_2 \) is a decider.

First, let \(w \in \Sigma^* \) and suppose \(M_2 \) accepts \(w \).

Trace \(M_2 \) on \(w \). \(M_2 \) in steps 2-3 does a BFS on graph underlying state diagram of \(A \) and marks all states reachable from \(q_0 \) (guard to terminate b/c \(\# \) of states in \(A \) is finite). Since assume \(L(A) = \emptyset \), no states from
If any marked, so in step 4 M_2 accepts w.

Next, assume $w \notin E_{DFA}$.

WTS w rejected by M_2.

\[w \neq <A> \text{ for any } DFA_A \text{ or } w = <A> \text{ but } L(SA) \neq \emptyset. \]

Case 1: M_2 rejects immediately.

Case 2: M_2 rejects in step 4.
Non-emptiness?

E'_{DFA} "Is the language of a DFA non-empty?"

M₁ is decider. \(L(M₁) = A_{DFA} = \{<A, w> | w \in \Sigma^*\} \)

Is this problem decidable?

A. Yes, using M₃ in the handout.
B. Yes, using M₄ in the handout. \(\text{NOT A DECIDER} \)
C. Yes, both M₃ and M₄ work.
D. Yes, but not using the machines in the handout.
E. No.

\(L(M₄) = E'_{DFA} \)
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> \mid A, B \text{ are DFA over } \Sigma, L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Will we be able to simulate A and B?
What does set equality mean?
Can we use our previous work?
Proving decidability

Claim: \(\text{EQ}_{\text{DFA}} \) is decidable

Proof: WTS that \(\{ <A, B> \mid A, B \text{ are DFA over } \Sigma, L(A) = L(B) \} \) is decidable. **Idea:** give high-level description

Step 1: construction

Will we be able to simulate?

What does set equality mean?

Can we use our previous work?

\[
X = Y \iff (X \cap Y^c) \cup (Y \cap X^c) = \emptyset
\]
Proving decidability

Claim: \(\text{EQ}_{\text{DFA}} \) is decidable

Proof: WTS that \(\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \} \) is decidable. Idea: give high-level description

Step 1: construction

Very high-level:
Build new DFA recognizing symmetric difference of \(L(A) \), \(L(B) \). Check if this set is empty.

\[
X = Y \iff (X \cap Y^c) \cup (Y \cap X^c) = \emptyset
\]
Proving decidability

Claim: \(\text{EQ}_{\text{DFA}} \) is decidable

Proof: WTS that \(\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \} \) is decidable. Idea: give high-level description

Step 1: construction

Define TM \(M_5 \) by: \(M_5 = \text{"On input } <A,B> \text{ where } A,B \text{ DFAs:} \)

1. Construct a new DFA, \(D \), from \(A,B \) using algorithms for complementing, taking unions of regular languages such that \(L(D) = \) symmetric difference of \(L(A) \) and \(L(B) \).
2. Run machine \(M_2 \) on \(<D> \).
3. If it accepts, accept; if it rejects, reject."
Proving decidability

Step 1: construction
Define TM M_5 by: $M_5 = \text{"On input } <A,B> \text{ where } A,B \text{ DFAs}
1. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) = \text{symmetric difference of } L(A) \text{ and } L(B)$.
2. Run machine M_2 on $<D>$.
3. If it accepts, accept; if it rejects, reject.

Step 2: correctness proof
WTS \((1)\) $L(M_5) = EQ_{DFA}$ and \((2)\) M_5 is a decider.
Which of the following computational problems are decidable?

A. A_{NFA}
B. E_{NFA}
C. EQ_{NFA}
D. All of the above
E. None of the above
Computational problems

Compare:

A. $A_{\text{REX}} = A_{\text{NFA}} = A_{\text{DFA}}$, $E_{\text{REX}} = E_{\text{NFA}} = E_{\text{DFA}}$, $EQ_{\text{REX}} = EQ_{\text{NFA}} = EQ_{\text{DFA}}$

B. They're all decidable, some are equal and some not.

C. They're of different types so all are different.

D. None of the above
Techniques

- **Subroutines**: can use decision procedures of decidable problems as subroutines in other algorithms
 - A_{DFA}
 - E_{DFA}
 - EQ_{DFA}

- **Constructions**: can use algorithms for constructions as subroutines in other algorithms
 - Converting DFA to DFA recognizing complement (or Kleene star).
 - Converting two DFA/NFA to one recognizing union (or intersection, concatenation).
 - Converting NFA to equivalent DFA.
 - Converting regular expression to equivalent NFA.
 - Converting DFA to equivalent regular expression.
Next time

- Are all computational problems decidable?

For Monday, pre-class reading: Section 4.3, page 207-209.