Today's learning goals

- Design TMs using different levels of descriptions.
- Determine whether a Turing machine is a decider.
- Prove properties of the classes of recognizable and decidable sets.

Sipser Section 3.1

Group WA Quartet suggestion: instead of using general CFG \leftrightarrow PDA transformation from look and analyze language first, i.e.

(a) G CFG \rightarrow $L(G) = L$ \rightarrow PDA for L.
(b, c) M PDA \rightarrow $L(M) = L$ \rightarrow CFG for L.
Describing TMs

- **Formal definition**: set of states, input alphabet, tape alphabet, transition function, state state, accept state, reject state.

- **Implementation-level definition**: English prose to describe Turing machine head movements relative to contents of tape.

- **High-level description**: Description of algorithm, without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.
Language of a TM

$L(M) = \{ w \mid M \text{ accepts } w \}$

If w is in $L(M)$ then the computation of M on w halts and accepts.

If the computation of M on w halts and rejects, then w is not in $L(M)$.

If the computation of M on w doesn't halt, then w is not in $L(M)$
Deciders and recognizers

- L is **recognized** by Turing machine M if $L(M) = L$.
- M **recognizes** L if M is a Turing machine and $L(M) = L$.
- M is a **decider** if it is a Turing machine and halts on all inputs.
- L is **decided** by Turing machine M if M is a decider and $L(M) = L$.
- M **decides** L if M is a decider and $L(M) = L$.

Sipser p. 170 Defs 3.5 and 3.6
Classifying languages

A language L is

Turing-recognizable if there is a TM M such that $L(M) = L$
in other words, *if there is some TM that recognizes it.*

Turing-decidable if there is a TM M such that M is a
decider and $L(M) = L$
in other words, *if there is some TM that decides it.*
Context-free languages

Regular languages

Turing recognizable languages

Turing decidable languages
An example

Which of the following is an implementation-level description of a TM which decides the empty set?

M = "On input w:
A. reject."
B. sweep right across the tape until find a non-blank symbol. Then, reject."
C. If the first tape symbol is blank, accept. Otherwise, reject."
D. More than one of the above.
E. I don't know.
Extension

• Give an implementation-level description of a Turing machine which **recognizes** (but does not decide) the empty set.

• Give a high-level description of this Turing machine.

• Give a formal description for each of A, B, C
Another example

Suppose M_1 and M_2 are Turing machines. Consider the new TM $M =$ "On input w,

1. Run M_1 on w. If M_1 rejects, rejects. If M_1 accepts, go to 2.
2. Run M_2 on w. If M_2 accepts, accept. If M_2 rejects, reject."

What kind of construction is this?
A. Formal definition of TM
B. Implementation-level description of TM
C. High-level description of TM
D. I don't know.
Another example

Suppose M_1 and M_2 are Turing machines.

Consider the new TM $M =$ "On input w,

1. Run M_1 on w. If M_1 rejects, reject. If M_1 accepts, go to 2.
2. Run M_2 on w. If M_2 accepts, accept. If M_2 rejects, reject."

What's $L(M)$?

Is M a decider? i.e. does M halt on each input?

Assume M_1, M_2 are deciders. Then M is decider too.

But didn't assume M_1, M_2 deciders.

$L(M) = L(M_1) \cap L(M_2)$. (no assumptions about M_1, M_2)
Assume \(w \in L(M_1) \cap L(M_2) \).

Claim: \(w \in L(M) \)

Pf: On \(w \), \(M \) first (in step 1) simulates \(M_1 \) on \(w \). Since assumed \(w \in L(M_1) \), \(M_1 \) halts. It accepts on input \(w \) so \(M \) goes to 2 and simulates \(M_2 \) on \(w \).

By assumption, \(w \in L(M_2) \) so \(M_2 \) accepts \(w \). \(M \) is defined to accept as well.
WTS $L(M) \subseteq L(M_1) \cap L(M_2)$

i.e. $L(M_1) \cup L(M_2) \subseteq L(M)$

Proof: Assume $w \notin L(M_1)$ or $w \notin L(M_2)$

WTS $w \notin L(M)$. M_1 rejects w.

Case 1: $w \notin L(M_1)$ \leq M_1 loops on w.

When run M on w:
- if in step 1, M_1 running on w rejects w, means M rejects too \triangleright
- otherwise, in step 1, M_1 running on w loops so M running on w loops (stays in step 1) and M doesn't accept w, i.e. $w \notin L(M)$.
Closure

Theorem: The class of decidable languages over fixed alphabet \(\Sigma \) is closed under union.

Proof: Let \(L_1, L_2 \) be decidable langs i.e. have \(M_1, M_2 \) are deciders \(L_i = \text{L}(M_i) \)

WTS ... \(L_1 \cup L_2 \) is decidable.

Want \(M \) s.t. \(\text{L}(M) = \text{L}(M_1) \cup \text{L}(M_2) \)

\[M_1 \cup M_2 \text{ doesn't type check} \]
Theorem: The class of decidable languages over fixed alphabet Σ is closed under union.

Proof: Let L_1 and L_2 be languages over Σ and suppose M_1 and M_2 are TMs deciding these languages. We will define a new TM, M, via a high-level description. We will then show that $L(M) = L_1 \cup L_2$ and that M always halts.
Theorem: The class of decidable languages over fixed alphabet Σ is closed under union.

Proof: Let L_1 and L_2 be languages and suppose M_1 and M_2 are TMs deciding these languages. Construct the TM M as "On input w,
1. Run M_1 on input w. If M_1 accepts w, accept. Otherwise, go to 2.
2. Run M_2 on input w. If M_2 accepts w, accept. Otherwise, reject."

Correctness of construction:
WTS $L(M) = L_1 \cup L_2$ and M is a decider.
Closure

The class of decidable languages is closed under
- Union ✓
- Concatenation
- Intersection
- Kleene star
- Complementation

The class of recognizable languages is closed under
- Union
- Concatenation
- Intersection ✓
- Kleene star

Good exercises – can’t use without proof! (Sipser 3.15, 3.16)
For next time

GroupHW4 due Saturday, May 12

For Monday, pre-class reading: Section 3.2, pp. 181