Today's learning goals

- Design TMs using different levels of descriptions.
- Determine whether a Turing machine is a decider.
- Prove properties of the classes of recognizable and decidable sets.

Group HW 4 Q1 suggestion

* Instead of general PDA ↔ CFG conversion
 Analyze language of specific CFG (c) or PDAs (b, c) ...
Describing TMs

- **Formal definition**: set of states, input alphabet, tape alphabet, transition function, state state, accept state, reject state.

- **Implementation-level definition**: English prose to describe Turing machine head movements relative to contents of tape.

- **High-level description**: Description of algorithm, without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.
Language of a TM

\[L(M) = \{ w \mid M \text{ accepts } w \} \]

If \(w \) is in \(L(M) \) then the computation of \(M \) on \(w \) halts and accepts.

If the computation of \(M \) on \(w \) halts and rejects, then \(w \) is not in \(L(M) \).

If the computation of \(M \) on \(w \) doesn't halt, then \(w \) is not in \(L(M) \).
Deciders and recognizers

- L is **recognized** by Turing machine M if $L(M) = L$.
- M **recognizes** L if M is a Turing machine and $L(M) = L$.

- M is a **decider** if it is a Turing machine and halts on all inputs.

- L is **decided** by Turing machine M if M is a decider and $L(M) = L$.
- M **decides** L if M is a decider and $L(M) = L$.
Classifying languages

A language L is

Turing-recognizable if there is a TM M such that $L(M) = L$ in other words, if there is some TM that recognizes it.

Turing-decidable if there is a TM M such that M is a decider and $L(M) = L$ in other words, if there is some TM that decides it.
Context-free languages

Turing recognizable languages

Turing decidable languages

Regular languages
Which of the following is an **implementation-level description** of a TM which decides the empty set?

M = "On input w:

A. reject." \(L(A) = \emptyset \)

B. sweep right across the tape until find a non-blank symbol. Then, reject." \(L(B) = \emptyset \) \(L(A) = \emptyset \) \(L(B) \cup L(A) = \emptyset \) on \(\epsilon \).

C. If the first tape symbol is blank, accept. Otherwise, reject." \(L(C) = \{ \epsilon \} \)

D. More than one of the above.

E. I don't know.
Machine B on ε loops.
So $\varepsilon \notin L(B)$

Machine B on $w \neq \varepsilon$ halts and rejects.
So $w \notin L(B)$.
\(M \) decides the empty set means

1. \(M \) recognizes the empty set
 i.e. \(L(M) = \emptyset \)
 i.e. \(M \) does not accept any string

and

2. for all \(w \), compute \(M \) on \(w \) halts
Extension

• Give an implementation-level description of a Turing machine which \textbf{recognizes} (but does not decide) the empty set.

• Give a high-level description of this Turing machine.
Another example

Suppose M_1 and M_2 are Turing machines. Consider the new TM $M = "$On input w,
1. Run M_1 on w. If M_1 rejects, rejects. If M_1 accepts, go to 2.
2. Run M_2 on w. If M_2 accepts, accept. If M_2 rejects, reject."

What kind of construction is this?
A. Formal definition of TM
B. Implementation-level description of TM
C. High-level description of TM
D. I don't know.
Another example

Suppose M_1 and M_2 are Turing machines.

Consider the new TM $M = \"On input w, \ni. Run M_1 on w. If M_1 rejects, rejects. If M_1 accepts, go to 2.
2. Run M_2 on w. If M_2 accepts, accept. If M_2 rejects, reject.\"$

Trace compn of M on w. Assuming $w \in L(M_1) \cap L(M_2)$, i.e., $w \in L(M_1)$ so M_1 halts on w, and accepts. So in step 1 of M, our simulation at M_1 on w will accept, go to step 2. Then similarly M_2 accepts M.

What's $L(M)$?

Is M a decider?
Case \(\text{WE } L(M_1) \)

Since \(\text{WE } L(M_1) \), computation of \(M \) on \(w \) will reject loop if \(M \) rejects \(w \), so will \(M \) (in step 1).
if \(M \) loops on \(w \), so will \(M \) (in step 1).

Conclusion: if \(w \in L(M_1) \) then \(w \notin L(M) \)

Similarly: if \(w \in L(M_2) \) then \(w \notin L(M) \)
Closure

Theorem: The class of decidable languages over fixed alphabet Σ is closed under union.

Proof: Let M_1, M_2 be deciders

WTS $L(M_1) \cup L(M_2)$ is decidable

Need $M < L(M) = L(M_1) \cup L(M_2)$.

Previous: The class of recognizable languages is closed under intersection.
Closure

Theorem: The class of decidable languages over fixed alphabet Σ is closed under union.

Proof: Let L_1 and L_2 be languages over Σ and suppose M_1 and M_2 are TMs deciding these languages. We will define a new TM, M, via a high-level description. We will then show that $L(M) = L_1 \cup L_2$ and that M always halts.
Closure

Theorem: The class of decidable languages over fixed alphabet Σ is closed under union.

Proof: Let L_1 and L_2 be languages and suppose M_1 and M_2 are TMs deciding these languages. Construct the TM M as "On input w,
1. Run M_1 on input w. If M_1 accepts w, accept. Otherwise, go to 2.
2. Run M_2 on input w. If M_2 accepts w, accept. Otherwise, reject."

Correctness of construction:
WTS $L(M) = L_1 \cup L_2$ and M is a decider.

Where do we use decidability?
Closure

The class of decidable languages is closed under
- Union ✓
- Concatenation
- Intersection
- Kleene star
- Complementation

The class of recognizable languages is closed under
- Union
- Concatenation
- Intersection ✓
- Kleene star

Good exercises – can’t use without proof! (Sipser 3.15, 3.16)
For next time

Group HW4 due Saturday, May 12

For Monday, pre-class reading: Section 3.2, pp. 181