Today's learning goals

- Trace the computation of a Turing machine on given input
- Describe the language recognized by a Turing machine
- Determine if a Turing machine is a decider
- Give an implementation-level description of a Turing machine
Turing machine computation

- Read/write head starts at leftmost position on tape
- Input string written on leftmost squares of tape, rest is blank
- Computation proceeds according to transition function:
 - Given current state of machine, and current symbol being read
 - the machine
 - transitions to new state
 - writes a symbol to its current position (overwriting existing symbol)
 - moves the tape head L or R (if possible)
- Computation ends if and when machine enters either the accept or the reject state.

\[L(M) = \{ w | \text{computation of } M \text{ on } w \text{ halts after entering the accept state} \} = \{ w | w \text{ is accepted by } M \} \]
Language of a TM

\[L(M) = \{ \text{w} \mid \text{M accepts w} \} \]

Which of the following is not always true?

A. If \(w \) is in \(L(M) \) then the computation of \(M \) on \(w \) halts and accepts.

B. If the computation of \(M \) on \(w \) halts and rejects, then \(w \) is not in \(L(M) \).

C. If \(w \) is not in \(L(M) \) then the computation of \(M \) on \(w \) halts and rejects.

HYP \(M \) does not accept \(w \).
Language of a Turing machine

\[L(M) = \{ \text{w} \mid \text{computation of M on w halts after entering the accept state} \} \]

i.e. \[L(M) = \{ \text{w} \mid \text{w is accepted by M} \} \]

Comparing TMs and PDAs, which of the following is true:

A. Both TMs and PDAs may accept a string before reading all of it.
B. A TM may only read symbols, whereas a PDA may write to its stack.
C. Both TMs and PDAs must read the string from left to right.
D. States in a PDA must be either accepting or rejecting, but in a TM may be neither.
E. I don't know.
Start of computation of M on w
At the start of the computation of M on $w = w_1 \ldots w_n$:

\[w_1 \ w_2 \ \ldots \ w_n \ u_1 \ u_2 \ \ldots \ \]

If $S((q, a)) = (q', b, R)$ then

\[\begin{array}{c}
q \\
\vdots \\
a \\
\vdots
\end{array} \]

becomes

\[\begin{array}{c}
q' \\
\vdots \\
b \\
\vdots
\end{array} \]

If $S((q, a)) = (q', b, L)$ then

\[\begin{array}{c}
q \\
\vdots \\
a \\
\vdots
\end{array} \]

becomes

\[\begin{array}{c}
q' \\
\vdots \\
b \\
\vdots
\end{array} \]
To think about

• Given a DFA, how would you simulate it with a TM?
• Given an NFA, how would you simulate it with a TM?
• Given a PDA, how would you simulate it with a TM?
Configuration

To trace DFAs: enough to list states.
To trace NFAs: tree of possible current states (incl. spontaneous moves)
To trace PDAs: tree of possible computations incl. state + stack

- Current state
- Current tape contents up to (finite) point after which all blank
- Current location of read/write head

current state is q
current tape contents are uv (and then all blanks)
current head location is first symbol of v
Special configurations

For input string w

- Starting configuration $q_0 \, w$
- Accepting configuration $u \, q_{\text{acc}} \, v$
- Rejecting configuration $u \, q_{\text{rej}} \, v$

Current state is q
Current tape contents are uv (and then all blanks)
Current head location is first symbol of v
Language of a TM

$L(M) = \{ w \mid M \text{ accepts } w \}$

$= \{ w \mid \text{there is a sequence of configurations of } M$

$\quad \text{where } C_1 \text{ is start configuration of } M \text{ on input } w,$

$\quad \text{each } C_i \text{ yields } C_{i+1} \text{ and } C_k \text{ is accepting configuration} \}$

"The language of M"

"The language recognized by M"
An example

\[L = \{ w\#w \mid w \text{ is in } \{0,1\}^* \} \]

We already know that \(L \) is

- not regular
- not context-free

We will prove that \(L \) is

the language of some Turing machine
L = \{ w#w \mid w \text{ is in } \{0,1\}^* \}

Idea for Turing machine

- Zig-zag across tape to corresponding positions on either side of '#' to check whether these positions agree. If they do not, or if there is no '#', reject. If they do, cross them off.
- Once all symbols to the left of the '#' are crossed off, check for any un-crossed-off symbols to the right of '#': if there are any, reject; if there aren't, accept.
Implementation-level description

Zig-zag across tape to corresponding positions on either side of '#' to check whether these positions agree. If they do not, or if there is no '#', reject. If they do, cross them off.

Once all symbols to the left of the '#' are crossed off, check for any un-crossed-off symbols to the right of '#': if there are any, reject; if there aren't, accept.

State diagram
\[Q = \{ q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_{\text{accept}}, q_{\text{reject}} \} \]

\[\Sigma = \{ 0, 1, \# \} \]

\[\Gamma = \{ 0, 1, \#, x, _ \} \]

All missing transitions have output \((q_{\text{reject}}, _, R)\)
Configuration $u \ q \ v$
for current tape uv (and then all blanks), current head location is first symbol of v, current state q
Computation on input 0# ?

Start: \[\begin{array}{c}
0 & \# & _ & _ & _ & _ & _ & _ & _ \\
\end{array} \]

\[q_2 \]

<table>
<thead>
<tr>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
<th>q_5</th>
<th>q_6</th>
<th>q_7</th>
<th>q_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1→R</td>
<td>0,1→R</td>
<td>x→R</td>
<td>x→R</td>
<td>0,1→R</td>
<td>0,1→R</td>
<td>#→R</td>
</tr>
</tbody>
</table>

Halt & Reject.
Describing TMs

- **Formal definition**: set of states, input alphabet, tape alphabet, transition function, state state, accept state, reject state.

- **Implementation-level definition**: English prose to describe Turing machine head movements relative to contents of tape.

- **High-level description**: Description of algorithm, without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.
For next time

GroupHW4 due Saturday, May 12

For Friday, pre-class reading:
* Bottom of page 166 and top of page 167 (high-level and implementation level definitions of Turing machines)

* Terminology for describing Turing machines pages 184-185