Generative Adversarial Networks, and Applications

Outline:

• Generative Models vs Discriminative Models (Background)
• Generative Adversarial Networks (GANs)
• Mathematical Proofs
• GAN Results
• GAN Failures
• Deep Convolutional GAN Architecture (Related Work)
• GAN-based Applications (Related Work)
Generative Models vs Discriminative Models:

- Data: Pixels
- Features: X
- Labels: Y (Zebra, No zebra)
- Discriminative model: model $p(y|x)$.
- Generative model: model $p(x,y)$.
 → Learn $p(y|x)$ indirectly using Bayes rule.

(Bayes rule: $p(y|x) \propto p(x|y)p(y)$)

Discriminative Model:

- Map each sample to feature space.
- Learns decision boundary.
- For each point (x') in feature space:
 - $P(\text{Zebra}|x')+P(\text{No Zebra}|x')=1$
Generative Model:

Learns probability distribution of each class of data:

\[\int P(x|\text{Zebra}) dx = 1 \]
\[\int P(x|\text{No Zebra}) dx = 1 \]

Generative Adversarial Networks (GANs):

There is a game between two networks:
- Generative network.
- Discriminative network.

Example: Counterfeit Money.
- G is a crook and is trying to generate fake money.
- D is a teller at the Bank.

G’s goal is to generate samples that D classifies as real.
\[\rightarrow \] G should learn the underlying distribution of real money.
Input: A real image (x), or a fake image (x' = G(z)).
Output: Probability that input is real.

D’s goal:
• D(x) = 1
• D(G(z)) = 0

G’s goal:
• D(G(z)) = 1

Objective Function:

\[
\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]
\]

Remember that:
- x: Real image
- G(z): Fake image
- D: Discriminator network
- G: Generative network

 discriminator’s ability to recognize generator samples as being fake
Desired Convergence:

We will prove that the models will approach equilibrium:

- \(D(x) = 0.5 \)
- \(D(G(z)) = 0.5 \)

\(D \) cannot discriminate.

\(G \) will learn underlying distribution of real data. (\(P_{data} \))
Training Algorithm:

From: Generative Adversarial Nets, Goodfellow et al, 2014

Algorithm 1: Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments.

```
for number of training iterations do
    for $k$ steps do
        • Sample minibatch of $m$ noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_{\text{noise}}(z)$.
        • Sample minibatch of $m$ examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
        • Update the discriminator by ascending its stochastic gradient:
          $$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[ \log D \left(x^{(i)}\right) + \log \left(1 - D \left(G \left(z^{(i)}\right)\right)\right) \right].$$
    end for
    • Sample minibatch of $m$ noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_{\text{noise}}(z)$.
    • Update the generator by descending its stochastic gradient:
      $$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(z^{(i)}\right)\right)\right).$$
end for
```

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Training Algorithm:

- The Algorithm takes k steps to optimize for the Discriminative net, D, and then one step of optimizing G, the generative net based on the outcome from D after above k steps.
- While optimizing for D, we work on the entire value function. For G, we only use the second term of the value function, as the gradient w.r.t. for the first term is zero.
Training Algorithm:

- It is important to note that we ascend the gradient when optimizing for D, as it is a maximization problem, and descend the gradient when optimizing for G as it is a minimization problem.

- Initially when G is far from optimal, the gradients in second optimization might be very small. Instead, we can ascend the gradient for \(\log(D(G(z))) \) initially.

From: Generative Adversarial Nets, Goodfellow et al, 2014
Global Optimality of $p_g = p_{\text{data}}$

This is done using

- A proposition for finding an optimal discriminator D for a fixed G (Proposition 1)
- A theorem for finding the global minimum for G (Theorem 1)

Proposition 1: For G fixed, the optimal discriminator D is:

$$D \ast G(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)}$$

Proof for Proposition 1:

- **Expected Value:**
 $$E[g(x)] = \sum x p(x) g(x) = \int x p(x) g(x) \, dx$$

- **Change of Variable:**
 - If $Y = u(X)$ and u is invertible, then $X = v(Y)$ where v is the inverse of u.
 - By using the change of variable rule on the density functions for the distribution of Y to the distribution of X, we get:
 $$f_Y(y) = f_X(v(y)) \times |v'(y)|$$

- **Now:**
 $$V(G, D) = E_x - p_{\text{data}}(x) [\log(D(x))] + E_z - p_z(z) [\log(1 - D(G(z)))]$$
 $$= \int_x p_{\text{data}}(x) \log(D(x)) \, dx + \int_z p_z(z) \log(1 - D(G(z))) \, dz$$
 $$= \int_x p_{\text{data}}(x) \log(D(x)) \, dx + p_g(x) \log(1 - D(x)) \, dx$$
Proof for Proposition 1 (Contd’.):

• From the last equation on previous slide:

\[V(G, D) = \int \left(p_{\text{data}}(x) \log(D(x)) + p_g(x) \log(1 - D(G(x))) \right) dx \]

• For a function \(f: y \rightarrow a \log(y) + b \log(1-y) \), the maximum occurs at \(y = \frac{a}{a+b} \).

• Therefore:

\[D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} \]

Global Optimality of \(p_g=p_{\text{data}} \)

• For a given \(G \), the minmax value function can be defined as:

\[C(G) = \max D V(G, D) \]

\[= E_x \sim p_{\text{data}} [\log(D_G^*(x))] + E_x \sim p_g [\log(1 - D_G^*(x))] \]

\[= E_x \sim p_{\text{data}} [\log\left(\frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} \right)] + E_x \sim p_g [\log\left(\frac{p_g(x)}{p_{\text{data}}(x) + p_g(x)} \right)] \]

• **Theorem 1**: The global minimum of the virtual training criterion for \(G \), i.e. \(C(G) \) is achieved if and only if \(p_g=p_{\text{data}} \). At that point, \(C(G) \) achieves the value of \(-\log(4)\).
Proof of Theorem 1:

- For $p_g = p_{\text{data}}$, $D_G^* = 1/2$; So,

- Also,

$$C(G) = E_x - p_{\text{data}}[-\log 2 + \log \left(\frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} \right)] + E_x - p_g[-\log 2 + \log \left(\frac{p_g(x)}{p_{\text{data}}(x) + p_g(x)} \right)]$$

$$= -\log(4) + \int_{x \sim p_{\text{data}}(x)} p_{\text{data}}(x) \log \left(\frac{p_{\text{data}}(x)}{(p_{\text{data}}(x) + p_g(x)) / 2} \right) + \int_{x \sim p_g(x)} p_g(x) \log \left(\frac{p_g(x)}{(p_{\text{data}}(x) + p_g(x)) / 2} \right)$$

Proof of Theorem 1 (Contd."):

- KL-Divergence between two probability distributions p and q:

$$KL(p \parallel q) = \sum_i p_i \log \left(\frac{p_i}{q_i} \right) = \int p(x) \log \left(\frac{p(x)}{q(x)} \right) dx$$

- From the last equation on previous slide:

$$C(G) = -\log(4) + \int_{x \sim p_{\text{data}}(x)} p_{\text{data}}(x) \log \left(\frac{p_{\text{data}}(x)}{(p_{\text{data}}(x) + p_g(x)) / 2} \right) + \int_{x \sim p_g(x)} p_g(x) \log \left(\frac{p_g(x)}{(p_{\text{data}}(x) + p_g(x)) / 2} \right)$$

$$KL(p_{\text{data}} \parallel \frac{p_{\text{data}} + p_g}{2}) + KL(p_g \parallel \frac{p_{\text{data}} + p_g}{2})$$

- $KL(p \parallel q) \geq 0$ for all p, q; equality holds when $p=q$.
- Therefore the minimum of $C(G) = -\log(4)$ obtained when $p_g = p_{\text{data}}$.
Convergence of Training Algorithm:

• For this, we use the following proposition.

• **Proposition 2**: If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed to reach its optimum given G, and \(p_g \) is updated to improve the criterion:

\[
E_x - p_{\text{true}}[\log D_g(x)] + E_x - p_g[\log(1 - D_g(x))]
\]

then \(p_g \) converges to \(p_{\text{data}} \).

GAN Failures
Deep Convolutional GAN Architecture (related work)
GAN Results

Failure 1: Mode Collapse

Problem
- Goal of GAN: To generate fake examples imitating real samples
- Easy way of achieving goal: Just generate easy modes (classes).

Failure 1: Mode Collapse (demo)

Image Source: CSE 253 (Winter 2017) Project of Kwonjoon Lee, Andrew Leverentz, Ali Mirzaei, and Andrew Durnford.

Failure 2: Vanishing Gradient

• Problem
 ▪ The representational power (or capacity) between discriminator and generator is not balanced
DCGAN: The First Stabilized GAN (01/07/2016)

Discriminator

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Output Size</th>
<th>Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolution (4, 4)</td>
<td>32 x 32 x 64</td>
<td>64</td>
</tr>
<tr>
<td>w/ stride (2, 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LeakyReLU (0.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsampling (2, 2)</td>
<td>16 x 16 x 128</td>
<td></td>
</tr>
<tr>
<td>Convolution (4, 4)</td>
<td>8 x 8 x 256</td>
<td></td>
</tr>
<tr>
<td>LeakyReLU (0.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully Connected (44512, 1)</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>sigmoid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generator

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Output Size</th>
<th>Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latent Random Noise</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Fully Connected (100, 44512)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deconvolution (4, 4)</td>
<td>8 x 8 x 256</td>
<td></td>
</tr>
<tr>
<td>w/ stride (2, 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReLU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upsampling (2, 2)</td>
<td>16 x 16 x 128</td>
<td></td>
</tr>
<tr>
<td>Convolution (4, 4)</td>
<td>32 x 32 x 64</td>
<td></td>
</tr>
<tr>
<td>LeakyReLU (0.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upsampling (2, 2)</td>
<td>64 x 64 x 3</td>
<td></td>
</tr>
<tr>
<td>Convolution (4, 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tanh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P (input is real)

DCGAN: Results

Bedroom images

Face images

GAN-Based Applications (related work)

- **Inspiration**
 - Vector("King") – Vector("Man") + Vector("Woman") \(\cong\) Vector("Queen")
 - Simple arithmetic operations reveal rich linear structure in representation space (Mikolov et al., 2013)

- **Question & Method**
 - Whether similar structure exists in Z representation (Input) of our Generator
 - e.g. “Smiling Woman” – “Neutral Woman” + “Neutral Man” \(\cong\) “Smiling Man”

- **Difficulties**
 - Results are unstable if working on only single sample, but averaging the Z vector for three exemplars yields consistent and stable generations.

DCGAN: Vector Arithmetic on Face Samples (01/07/2016)
DCGAN: Vector Arithmetic on Face Samples

• Result

![Result Diagram]

DCGAN: Vector Arithmetic on Face Samples

• **Result**
 - “Turn Vector”
 - By adding interpolations to random samples (Z) we were able to transform their pose.

![Turn Vector](image)

DCGAN: Vector Arithmetic on Face Samples

• **Future**
 - Conditional generative models can learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al., 2014)
 - Further exploring the mentioned vector arithmetic could dramatically reduce the amount of data needed for conditional generative modeling of complex image distributions.
 - *e.g.* Gender + Expression + Race + Age + Pose... = Individual with many details.
Video GAN: (Conditional) Video Generation (09/2016)

- **Video GAN Basic**
 - Generator tries to generate a synthetic video, while Discriminator tries to discriminate synthetic from real videos
 - Structure (Two-stream):

- **Video Generation:**
 - 5000-hour videos from Flickr for training
 - Experiment with four scene categories: golf course, hospital rooms, beaches, and train stations.

- **Result:**
Video GAN: (Conditional) Video Generation

- **Conditional Video GAN Structure**
 - Given a static image x_0, extrapolate a video of possible consequent frames.

- **Result**

CycleGAN: Collection Style Transfer (03/30/2017)

- **Image to Image Translation** (11/21/2016)
 - Paired Data
 - Conditional GAN

CycleGAN: Collection Style Transfer (03/30/2017)

CycleGAN Basics
- Discovering **special characteristics of each image collection** and how these characteristics could be **translated into the other image collection**, all in the absence of any paired training examples.
- Generator 1: Input x -> Output $G(x)$
- Discriminator: Tell $G(x)$ from x
- Generator 2: Input y -> Output $F(y)$
- Discriminator 2: Tell $F(y)$ from y
- **Original Two GANs Loss**
- Add a **Cycle Consistency Loss** that encourages $F(G(x)) = x$ and $G(F(y)) = y$
- L1 norm in this case

Objective
- Minic the style of a whole set of art work, instead of a single piece of art work.
- e.g. Transfer photos(X) to Van Gogh style(Y), rather than just in the style of Starry Night.

Method
- Train the model on **landscape photographs downloaded from Flickr(X) and art work from WikiArt(Y)**

Some art works of Vincent Van Gogh, from WikiArt

Starry Night, 1889, from WikiArt
• Result

CycleGAN: Other Applications

• Photo generation from paintings
 ▫ Also include an identity loss that encourages identity mapping (photo and painting should not vary much)

CycleGAN: Other Applications

- **Season Transfer**

Thanks!