CSE 190D
Database System Implementation

Arun Kumar

Topic 7.2: Advanced “Big Data” Systems

Not included for final exam
“Big Data” Systems

- Parallel RDBMSs
- Beyond RDBMSs: A Brief History
- “Big Data” Systems
 - The MapReduce/Hadoop Craze
 - Spark and Other Dataflow Systems
 - Key-Value NoSQL Systems
 - Graph Processing Systems
 - Advanced Analytics Systems
Key-Value NoSQL Systems

- **Simple API**: *get* and *put* unique records very quickly!
 - Records usually uniquely identified by a “**key**”; information in record is the “**value**” (could be general JSON object)
- Used extensively by Web companies, e.g., get product record quickly and update stock count, update Facebook status, etc.
- Need high availability, high scalability, “eventual” consistency
- **Idea**: Discard ACID and 30+ years of DB lessons; use “**BASE**” (Basically Available, Soft state, and Eventually consistent)
- The new RDBMS-hating “movement” was christened “**NoSQL**”
Key-Value NoSQL Systems

Also called transactional NoSQL (read-write)

Hadoop / Spark aka analytical NoSQL (read mostly)
Recent work on relaxed consistency models with guarantees in between full ACID and fuzzy best-effort BASE/Eventual

5 consistency levels of Microsoft Azure CosmosDB (a geo-distributed cloud-native DBMS)

My bias: One of the most important and challenging open research problems in DB/distributed systems intersection!

Advertisement: Take CSE 223B to learn more!
“Big Data” Systems

❖ Parallel RDBMSs
❖ Beyond RDBMSs: A Brief History
❖ “Big Data” Systems
❖ The MapReduce/Hadoop Craze
❖ Spark and Other Dataflow Systems
❖ Key-Value NoSQL Systems
❖ Graph Processing Systems
❖ Advanced Analytics Systems
Graph Processing Systems

- Not a workload DB folks used to really care about
- Specialized graph systems have been around for years (Neo4j), but more popular now (Facebook, LinkedIn, etc.)
- **Data Model**: set of nodes, and set of (multi-)edges
- **Ops/queries**: nearest neighbors, shortest path, connectivity, density, cliques, etc.
Graph Processing Systems

Can be handled as an application on an RDBMS, but might be inefficient – transitive closure, repeated self-joins, etc.
Graph Processing Systems

Figure 1-3. An overview of the graph database space
“Big Data” Systems

- Parallel RDBMSs
- Beyond RDBMSs: A Brief History
- “Big Data” Systems
 - The MapReduce/Hadoop Craze
 - Spark and Other Dataflow Systems
 - Key-Value NoSQL Systems
 - Graph Processing Systems
 - Advanced Analytics Systems
Advanced Analytics Systems

- Systems for mathematically advanced data analysis ops (not just SQL aggregates):

 Statistics, machine learning, data mining, ...

- Two Orthogonal Dimensions of Categorization:

 Packages of Algorithms vs. Linear Algebra Systems

 Layered on Existing Platforms vs. Customized Systems
Advanced Analytics Systems

❖ Packages of Algorithms Layered on Existing Platforms:

In-RDBMS: use RDBMS’s UDFs/UDAs
Oracle DM, MADlib, Bismarck (Wisconsin), etc.

On-Hadoop/Spark/etc.: use their APIs
Apache Mahout, Spark MLlib, AzureML, etc.

Key challenge: Rewrite statistical and ML algorithms to use the extensibility abstractions of these systems

My bias: Hot area of research in DB / ML intersection
Advanced Analytics Systems

- **Customized Systems/Frameworks:**
 - TensorFlow (Google): especially good for deep learning
 - GraphLab (Wash): graph-parallel analytics/ML; uses MPI
 - DeepDive (Stanford): for statistical relational learning
 (uses an RDBMS for some parts)

Each system has its own set of challenges and ideas

My bias: Hot area of research in DB / ML / systems intersection
Advanced Analytics Systems

❖ **Linear Algebra Systems** (mostly, R-based or R-like):
 R is incredibly popular for statistical analysis

❖ **Layered on Existing Platforms:**
 - **In-RDBMS:** Oracle RE, SAP HANA
 - **Others:** SystemML-on-Spark, SparkR

❖ **Customized Platforms:**
 - ScaLAPACK, Microsoft Revolution R

My bias: Hot area of research and industrial R&D
Advanced Analytics Systems

Summary: Scalable and efficient advanced data analytics / data science is key to unlocking the value of “Big Data”

If you are interested in learning more about advanced analytics systems, read my survey paper at:

http://cseweb.ucsd.edu/~arunkk/vision/

Click “Associated Survey of ML Systems” under Downloads

Advertisement: Advanced analytics is the focus of my research

Fall’17: CSE 190 Seminar on Advanced Data Science
Winter’18: CSE 291 Topics in Advanced Analytics and ML Systems
NoSQL, Graphs, and Advanced Analytics are **not included for the final exam**!

Thank you for taking CSE 190D!