CSE 140 Lecture 13 System Designs

CK Cheng CSE Dept. UC San Diego

System Designs

•Introduction

- Methodology and Framework
- •Components
- •Specification
- •Implementation

Introduction

- Methodology
 - Approach with success stories.
 - Hierarchical designs with interface between the modules (BSV).
- Data Subsystem and Control Subsystem
 - For n-bit data, each operation takes n times or more in hardware complexity.
 - Data subsystem carries out the data operations and transports.
 - Control system sequences the data subsystem and itself.

I. Introduction: Framework

II. Components

Components

Data Subsystem Storage Modules Operators Interconnections

Functions

Data storage Data operations Data transport

ControlSequential machinesControl of data operationsSubsystemControl of data transportsControl of the sequential system

II. Data Subsystem Components

- Storage: Register, RAM, FIFO, LIFO, Counter, Shifter
- Operator: ALU, Floating Point Operators
- Interconnect: Wire, Buses, Crossbars

II. Components: Storage Modules, Register

Modulo-n Counter

TC= 1if Q (t) = n-1 and CNT = 1= 0otherwise

III. Specification: Program

- 1. Objects (Registers, Outputs of combinational logic)
- 2. Operation (Logic, Add, Multiplication, DSP, and etc.)
- 3. Assignment
- 4. Sequencing

Example:

Signal S1, S2, R[15:0]:FFs, Registers, wires $Z \leftarrow A + B$:Registers, Adder, Interconnect $R1 \leftarrow R2$:Registers and InterconnectBegin, End:Controlif () then (), ENDIF: Control

VI. Implementation

- Example
- Handshaking
 - Request and Acknowlegement
- Datapath Subsystem
 - Data Operators
 - Data Transporters
- Control Subsystem
 - One Hot Machine Design

VI. Implementation: Example AddModule(X, Y, Z, start, done) { Input X[15:0], Y[15:0] type bit-vector, start type boolean; Local-Object A[15:0], B[15:0] type bit-vector; Output Z[15:0] type bit-vector, done type boolean; S0: If start' goto S0 || done $\leftarrow 1$; S1: A \leftarrow X || B \leftarrow Y || done \leftarrow 0; S2: $Z \leftarrow Add(A, B) \parallel goto S0;$ ł Exercise: Go through the handshaking, data

subsystem and control subsystem designs.

AddModule(X,Y,start,done)

iClicker

How many clock cycles does the AddModule take to complete one handshaking iteration? A. One cycle B. Two cycles C. More than two cycles

Logistics: Grading

Grade on style, completeness and correctness

- zyBook exercises: 20%
- iClicker: 9% (by participation up to three quarters of classes)
- Homework: 15% (grade based on a subset of problems. If more than 85% of class fill out CAPE evaluations, the lowest homework score will be dropped)
- Midterm 1: 27% (T 5/2/17)
- Midterm 2: 28% (Th 6/8/17)
- Final: 1% (take home exam, due 10PM, Th 6/15/17)
- Grading: The best of the following
 - The absolute: A->90% ; B->80% of total 100% score
 - The curve: (A+,A,A-) top 33+ ϵ % of class; (B+,B,B-) second 33+ ϵ %
 - The bottom: C- above 45% of absolute score.

Logistics

Grade on style, completeness and correctness

- zyBook exercises: 20% (Half of the points will be added for exercises that missed the due date but are completed by 6/11)
- iClicker: 9% (the points are prorated and saturate up to three quarters of classes)
- HW5 solution will posted asap. Thus, there will be no time for late submission.
- New office hrs for W10 will be posted on the web.
- No discussion session for W10.
- Review session (note for Sunday 6/4, session starts after 2PM)
 - A. Saturday 6/3
 - B. Sunday 6/4