Today's learning goals

- Explain the limits of the class of regular languages
- Justify why the Pumping Lemma is true
- Apply the Pumping Lemma in proofs of nonregularity
- Identify some nonregular sets
All roads lead to … regular sets?

Are there any languages over \{0,1\} that are not regular?

A. Yes: a language that is recognized by an NFA but not any DFA.

B. Yes: there is some infinite language of strings over \{0,1\} that is not described by any regular expression.

C. No: all languages over \{0,1\} are regular because that's what it means to be a language.

D. No: for each set of strings over \{0,1\}, some DFA recognizes that set.

E. I don't know.
All languages over Σ

Regular languages over Σ

Finite languages over Σ
Counting

- **Fact:** a countable union of countable sets is countable.
- **Fact:** $\{0,1\}^*$ is countably infinite. X^* is countably infinite when X is finite.
- **Fact:** the set of subsets of a countably infinite set is uncountable.

- **Fact:** there are countably many DFA with $\Sigma=\{0,1\}$
- **Fact:** there are countably many regular languages over $\{0,1\}$
Counting

- Fact: A countable union of countable sets is countable.
- Fact: $\{0,1\}$ is countably infinite. X^* is countably infinite when X is finite.
- Fact: The set of subsets of a countably infinite set is uncountable.
- Fact: There are countably many DFA with $\Sigma = \{0,1\}$
- Fact: There are countably many regular languages over $\{0,1\}$

Uncountably many languages over $\{0,1\}$

Countably many regular languages over $\{0,1\}$
Birds' eye view

- All languages over Σ
- Regular languages over Σ
- Finite languages over Σ
Proving nonregularity

How can we prove that a set is non-regular?
A. Try to design a DFA that recognizes it and, if the first few attempts don't work, conclude there is none that does.
B. Prove that it's a strict subset of some regular set.
C. Prove that it's the union of two regular sets.
D. Prove that its complement is not regular.
E. I don't know.
Where we stand

• There exist non-regular sets.

• If we know that some sets are not regular, we can conclude others are \textbf{also} not regular \textit{judiciously reasoning using closure properties of class of regular languages}.

• No example of a specific regular set … \textit{yet}.
Bounds on DFA

• in DFA, memory = states

• Automata can only "remember"…
 • …finitely far in the past
 • …finitely much information

• If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.
Example!

\(\{ 0^n1^n \mid n \geq 0 \} \)

What are some strings in this set?
What are some strings not in this set?

Compare to \(L(0^*1^*) \)
Design a DFA? NFA?
Example!

\[\{ 0^n1^n \mid n \geq 0 \} \]

What are some strings in this set?
What are some strings not in this set?

Compare to \(L(0^*1^*) \)
Design a DFA? NFA?
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA

Idea: if one long string is accepted, then many other strings have to be accepted too.
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^iz \in A$,
- $|xy| \leq p$.
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that:

- $|y| > 0$, and
- for each $i \geq 0$, $xy^iz \in A$,
- $|xy| \leq p$.
Negation

- Pumping lemma "There is \(p \), where \(p \) is a pumping length for \(L \)"

- Given a specific number \(p \), it being a pumping length for \(L \) means

\[
\forall w \left(\left(|w| \geq p \land w \in L \right) \rightarrow \exists x \exists y \exists z \left(w = xyz \land |y| > 0 \land |xy| \leq p \land \forall i \left(xy^i z \in L \right) \right) \right)
\]

- So \(p \) not being a pumping length of \(L \) means

\[
\exists w \left(|w| \geq p \land w \in L \land \forall x \forall y \forall z \left(\left(w = xyz \land |y| > 0 \land |xy| \leq p \right) \rightarrow \exists i \left(xy^i z \notin L \right) \right) \right)
\]
Proof strategy

To prove that a language L is not regular

- Assume towards a contradiction that it is.
- Use Pumping Lemma to give p, a pumping length for L
- Show that p actually isn't a pumping length for L.
- \(\rightarrow \leftarrow \)
- Conclude that L is not regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Assume, towards a contradiction, that L is regular.

Pumping Lemma gives property of all regular sets. Can we get a contradiction by assuming that the Pumping Lemma applies to this set?
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof:
Assume towards a contradiction \(L \) is regular.

So by Pumping Lemma, \(L \) has a pumping length, call it \(p \).

FACT: \(p \) is a pumping length for \(L \) (by definition).

CLAIM: \(p \) is not a pumping length for \(L \).

Conclude: contradiction!
Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: ...In particular, this means that every string in L that is of length p or more can be "pumped".

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L.

So we have a contradiction, and L is not regular.
Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: …

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L.

Choose $s = 0^p1^p$. Consider any $s = xyz$ with $|y| > 0$, $|xy| \leq p$.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \).

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0 \), \(|xy| \leq p \).

Since \(|xy| \leq p \), \(x = 0^k \), \(y = 0^m \), \(z = 0^r1^p \) with \(k+m+r = p \), \(j > 0 \).
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: …

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y|>0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L

Choose $s = 0^p1^p$. Consider any $s = xyz$ with $|y|>0$, $|xy| \leq p$.

Since $|xy| \leq p$, $x = 0^k$, $y = 0^m$, $z = 0^r1^p$ with $k+m+r = p$, $j>0$.

Picking $i=0$: $xy^iz = xz = 0^k0^m1^p = 0^{k+m}1^p$, not in L!
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: …

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L

Choose $s = 0^p1^p$. Consider any $s = xyz$ with $|y| > 0$, $|xy| \leq p$.

Since $|xy| \leq p$, $x = 0^k$, $y = 0^m$, $z = 0^r1^p$ with $m+n+r = p$, $j > 0$.

Picking $i = 0$: $xy^iz = xz = 0^k0^m1^p = 0^{k+m}1^p$, not in L! This is a contradiction with the Pumping Lemma applied to L, so L must not be regular.
Another example

Claim: The set \(\{a^m b^n a^m \mid m, n \geq 0\} \) is not regular.

Proof: …Consider the string \(s = \ldots \)

You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \). Now we will prove a contradiction with the statement "s can be pumped"

Which choices of \(s \) cannot be used to complete the proof?

A. \(s = a^p b^p \)
B. \(s = ab^p a \)
C. \(s = a^p b^p a^p \)
D. \(s = a^p ba^p \)

E. None of the above (all of these choices work).
Another example

Claim: The set \(\{a^m b^m a^n \mid m, n \geq 0\} \) is not regular.

Proof: \(\ldots \text{Consider the string } s = \ldots \)

You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \). Now we will prove a contradiction with the statement "\(s \) can be pumped".

Consider an arbitrary choice of \(x, y, z \) such that \(s = xyz, \ |y| > 0, \ |xy| \leq p \). \textbf{This means that...} What properties are guaranteed about \(x, y, z \)?

\(\text{Consider } i = \ldots \) In this case, \(xy^i z = \ldots \), which is not in \(L \), a contradiction with the Pumping Lemma applying to \(L \) and so \(L \) is not regular.
And another

Claim: The set \(\{ w \, w^R \mid w \text{ is a string over } \{0,1\} \} \) is not regular.

Proof: …Consider the string \(s = \ldots \) You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \). Now we will prove a contradiction with the statement "\(s \) can be pumped" Consider \(i = \ldots \)

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p0^p \), \(i=2 \)
B. \(s = 0110 \), \(i=0 \)
C. \(s = 0^p110^p \), \(i=1 \)
D. \(s = 1^p001^p \), \(i=3 \)
E. I don't know
How do we choose i?

Claim: The set $\{0^j1^k \mid j, k \geq 0 \text{ and } j \geq k \}$ is not regular.

Proof: …Consider the string $s = \ldots$

You must pick s carefully: we want $|s| \geq p$ and s in L. Now we will prove a contradiction with the statement "s can be pumped" Consider $i = \ldots$

Which s and i let us complete the proof?

A. $s = 0^p1^p$, $i=2$ B. $s = 0^p1^p$, $i=p$ C. $s = 0^p1^p$, $i=1$ D. $s = 0^p1^p$, $i=0$

E. I don't know
Regular sets: not the end of the story

- Many **nice / simple / important** sets are not regular
- Limitation of the finite-state automaton model
 - Can't "count"
 - Can only remember finitely far into the past
 - Can't backtrack
 - Must make decisions in "real-time"
- We know computers are more powerful than this model…

Which conditions should we relax?
The next model of computation

• **Idea:** allow *some* memory of unbounded size

• **How?**
 - Generalization of regular expressions → **Context-free grammars**
 - Generalization for DFA → **Pushdown Automata**