Today's learning goals

- Decide whether or not a string is described by a given regular expression
- Design a regular expression to describe a given language
- Convert between regular expressions and automata
- Explore the limits of regular sets

Reminder: Exam 1 is Tuesday April 25 see seating map!
Inductive application of closure

R is a regular expression over Σ if

1. $R = a$, where $a \in \Sigma$
2. $R = \varepsilon$
3. $R = \emptyset$
4. $R = (R_1 \cup R_2)$, where R_1, R_2 are themselves regular expressions
5. $R = (R_1 \circ R_2)$, where R_1, R_2 are themselves regular expressions
6. (R_1^*), where R_1 is a regular expression.

Σ is shorthand for $(0 \cup 1)$ if $\Sigma = \{0, 1\}$, Parentheses may be omitted, R^+ means RR^*, R^k means R concatenated with itself k times.
Syntax → Languages

The language described by a regular expression, $L(R)$:

- $L((0 \cup 1) \cup 1) = \{0, 1\}$

- $L((0 \cup 1) \cup 0) = L(0) \cup L(1) = \{0\} \cup \{1\} = \{0, 1\}$

- $L((\Sigma \Sigma \Sigma \Sigma)^*) = \{w \in \Sigma^* | 1w1w4\}^* = \{w \in \Sigma^* | 1w1w4\}^{*k, o}$

- $L(1^*00) = \{xyz | x \in L(1^*), y \in L(\emptyset), z \in L(0)\}$

Shorthand: \emptyset may be dropped

1. $R = a$, where $a \in \Sigma$
2. $R = \varepsilon$
3. $R = \emptyset$
4. $R = (R_1 \cup R_2)$
5. $R = (R_1 \circ R_2)$
6. (R_1^*)
L(R)

Which of the following strings is **not** in the language described by

\[
L = \{(00)^{\ast}(11) \cup 01\}^{\ast}
\]

A. 00
B. 01
C. 1101
D. \(\varepsilon\)
E. I don't know

\[
A = \{01, (00)^{n}11 / n \geq 0 \}
\]

every run \(00\)s is followed by 11
Let \(L \) be the language over \{a,b\} described by the regular expression

\[
((a \cup \emptyset) \ b^*)^*
\]

Which of the following is not true about \(L \)?

A. Some strings in \(L \) have equal numbers of a's and b's
B. \(L \) contains the string aaaaaaa
C. a's never follow b's in any string in \(L \)
D. \(L \) can also be represented by the regular expression \((ab^*)^*\)
E. More than one of the above.
Regular expressions in practice

- **Compilers**: first phase of compiling transforms Strings to Tokens *keywords, operators, identifiers, literals*
 - One regular expression for each token type

- **Other software tools**: grep, Perl, Python, Java, Ruby, …
"Regular = regular"

Theorem: A language is regular if and only if some regular expression describes it.

Lemma 1.55: If a language is described by a regular expression, then it is regular. (if build NFA, then use subset construction)

Lemma 1.60: If a language is regular, then it is described by some regular expression.
L(R) to NFA (to DFA)

- Idea: basic regular expressions are easy to implement as DFA, for inductive step of definition, use closure under regular operations.
- E.g.: build NFA recognizing the language described by

\[(00 \cup 11)^*\]
DFA to regular expression

Lemma 1.60, page 69

- Idea: use intermediate model GNFA whose labels are regular expressions

- E.g.: build regular expression describing language recognized by

\[1 (0 \cup 1)^* \]