Today's learning goals Sipser Ch 1.2, 1.3

• Decide whether or not a string is described by a given regular expression
• Design a regular expression to describe a given language
• Convert between regular expressions and automata

Reminder: Exam 1 is Tuesday April 25 in class
Inductive application of closure

Sipser 1.52 p. 64

R is a regular expression over \(\Sigma \) if

1. \(R = a \), where \(a \in \Sigma \)
2. \(R = \varepsilon \)
3. \(R = \emptyset \)
4. \(R = (R_1 \cup R_2) \), where \(R_1, R_2 \) are themselves regular expressions
5. \(R = (R_1 \circ R_2) \), where \(R_1, R_2 \) are themselves regular expressions
6. \((R_1^*) \), where \(R_1 \) is a regular expression.

\(\Sigma \) is shorthand for \((0 \cup 1) \) if \(\Sigma = \{0,1\} \), Parentheses may be omitted, \(R^* \) means \(RR^* \), \(R^k \) means \(R \) concatenated with itself \(k \) times.
Syntax → Languages

The language described by a regular expression, L(R):

- L ((0 U 1)U1) = { }

- L ((ΣΣΣΣ)*) = { }

- L (1*Ø0) = { }

1. \(R = a \), where \(a \in \Sigma \)
2. \(R = \varepsilon \)
3. \(R = \emptyset \)
4. \(R = (R_1 \cup R_2) \)
5. \(R = (R_1 \circ R_2) \)
6. \((R_1^*) \)
L(R)

Which of the following strings is **not** in the language described by

\[
(((00)^*(11)) \cup 01)^*
\]

A. 00
B. 01
C. 1101
D. ε
E. I don't know
Let L be the language over \{a,b\} described by the regular expression

\(((a \cup \emptyset) \ b^*)^*\)

Which of the following is not true about L?

A. Some strings in L have equal numbers of a's and b's
B. L contains the string aaaaaaa
C. a's never follow b's in any string in L
D. L can also be represented by the regular expression \((ab^*)^*\)
E. More than one of the above.
Regular expressions in practice

- **Compilers**: first phase of compiling transforms Strings to Tokens *keywords, operators, identifiers, literals*
 - One regular expression for each token type

- **Other software tools**: grep, Perl, Python, Java, Ruby, …
"Regular = regular"

Theorem: A language is regular if and only if some regular expression describes it.

Lemma 1.55: If a language is described by a regular expression, then it is regular.

Lemma 1.60: If a language is regular, then it is described by some regular expression.
Idea: basic regular expressions are easy to implement as DFA, for inductive step of definition, use closure under regular operations.

E.g.: build NFA recognizing the language described by

\((00 \cup 11)^*\)
DFA to regular expression

- Idea: use intermediate model **GNFA** whose labels are regular expressions

 DFA → GNFA: start state \(\rightarrow\) all, single accept, one arrow from all to all → GNFA with fewer states → 2 state GNFA → Regular expression

- E.g.: build regular expression describing language recognized by

Lemma 1.60, page 69
All roads lead to ... regular sets?

Are there any languages over \(\{0,1\} \) that are not regular?

A. Yes: a language that is recognized by an NFA but not any DFA.

B. Yes: there is some infinite language of strings over \(\{0,1\} \) that is not described by any regular expression.

C. No: all languages over \(\{0,1\} \) are regular because that's what it means to be a language.

D. No: for each set of strings over \(\{0,1\} \), some DFA recognizes that set.

E. I don't know.
Counting

• Fact: a countable union of countable sets is countable.
• Fact: \(\{0,1\}^*\) is countably infinite. \(X^*\) is countably infinite when \(X\) is finite.
• Fact: the set of subsets of a countably infinite sets is uncountable.

• Fact: there are countably many DFA with \(\Sigma=\{0,1\}\)
• Fact: there are countably many regular languages over \(\{0,1\}\)
Counting

• Fact: A countable union of countable sets is countable.
• Fact: \({\{0,1\}}^*\) is countably infinite. A set \(X^*\) is countably infinite when \(X\) is finite.
• Fact: The set of subsets of a countably infinite set is uncountable.
• Fact: There are countably many DFA with \(\Sigma = \{0,1\}\).
• Fact: There are countably many regular languages over \(\{0,1\}\).

Uncountably many languages over \(\{0,1\}\)
Countably many regular languages over \(\{0,1\}\)
Proving nonregularity

How can we prove that a set is non-regular?

A. Try to design a DFA that recognizes it and, if the first few attempts don't work, conclude there is none that does.
B. Prove that it's a strict subset of some regular set.
C. Prove that it's the union of two regular sets.
D. Prove that its complement is not regular.
E. I don't know.
Where we stand

• There exist non-regular sets.

• If we know that some sets are not regular, we can conclude others are also not regular judiciously reasoning using closure properties of class of regular languages.

• No example of a specific regular set ... yet.
Bounds on DFA

- in DFA, memory = states

- Automata can only "remember"…
 - …finitely far in the past
 - …finitely much information

- If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.