1. **4-wise independence**

We saw in class a construction of 2-wise independent hash functions. Here, we will generalize this to 4-wise independence; a similar idea extends to k-wise independence for any k.

Let \(\mathbb{F} \) be a finite field. Define the following family of functions \(h : \mathbb{F} \to \mathbb{F} \):

\[
H = \{ h_{a,b,c,d} (x) = a + bx + cx^2 + dx^3 : a, b, c, d \in \mathbb{F} \}
\]

Prove that \(H \) is a 4-wise independent family. That is: for any 4 distinct values \(x_1, x_2, x_3, x_4 \in \mathbb{F} \), and any 4 values, not necessarily distinct, \(y_1, y_2, y_3, y_4 \in \mathbb{F} \),

\[
\Pr_{h \in H} [h(x_1) = y_1, h(x_2) = y_2, h(x_3) = y_3, h(x_4) = y_4] = \frac{1}{|\mathbb{F}|^4}
\]

2. **Sketching:**

Let \(U \) be a finite universe. A family of hash functions \(H = \{ h : U \to \{-1,1\} \} \) is called a sketching hash family with error \(\varepsilon \) if it satisfies the following property: for any labeling of the universe elements with real values \(v : U \to \mathbb{R} \), not all zero, it holds that

\[
\Pr_{h \in H} \left[\sum_{x \in U} v(x)h(x) = 0 \right] \leq \varepsilon.
\]

Equivalently, we can identify each \(h \in H \) with the vector \(v_h \in \{-1,1\}^{|U|} \) given by the truth table of \(h \) (namely, its evaluation on all universe elements). The condition that \(H \) is a sketching hash family is equivalent to the property that any nonzero vector \(v \in \mathbb{R}^{|U|} \) is orthogonal to at most an \(\varepsilon \)-fraction of the vectors \(\{v_h : h \in H\} \).

The value \(\text{Sketch}_h(v) = \sum v(x)h(x) \) is called the sketch of \(v \), under the hash function \(h \).

(a) Prove that if \(v, v' \) are different labelings of the universe, then with high probabilities over the choice of the hash function \(h \), their sketches are distinct:

\[
\Pr_{h \in H} [\text{Sketch}_h(v) = \text{Sketch}_h(v')] \leq \varepsilon
\]

(b) Prove that if \(H \) is the set of all functions from \(U \) to \{-1,1\} then it is a sketching hash family with error \(\varepsilon = 1/2 \).

(c) Prove that if \(H \) is 4-wise independent then it is a sketching hash family with error \(\varepsilon = 2/3 \).

Hint: Fix a nonzero \(v : U \to \mathbb{R} \) and let \(\sigma^2 = \sum_{x \in U} v(x)^2 > 0 \). Define \(Q(h) = |\text{Sketch}_h(v)|^2 \). Prove that \(\mathbb{E}_{h \in H}[Q(h)] = \sigma^2 \) and \(\mathbb{E}_{h \in H}[Q(h)^2] \leq 3 \sigma^4 \). Use the Paley-Zygmund inequality (Google it) to prove that \(\Pr_{h \in H} [Q(h) > 0] \geq 1/3 \).
3. Satisfiability

We saw in class an algorithm for solving Satisfiability for 3-CNFs on \(n \) inputs, which runs in time \(2^{\gamma n} \) for \(\gamma \approx 0.41 \), and improves upon full enumeration which takes time \(2^n \).

The same ideas can be generalized to \(k \)-CNFs for \(k \geq 3 \).

(a) Show that the same algorithm, when applied to \(k \)-CNFs, finds a solution (if one exists) in expected time \(2^{\gamma_m n} \) for some \(\gamma_m < 1 \).

(b) Show that \(\gamma_m \leq 1 - c/k \) for some absolute constant \(c > 0 \).

4. Random walks

Let \(X_0 = 0, X_1, X_2, ... \) be an random walk defined as \(X_i = X_{i-1} + \Delta_i \), where \(\Delta_i \in \{-1,1\} \) are independently chosen with probability \(\Pr[\Delta_i = 1] = \Pr[\Delta_i = -1] = 1/2 \). We will show that with a constant probability \(|X_n| \approx \sqrt{n} \), and that the same holds even if the steps \(\Delta_i \) are not independent, but are only 4-wise independent.

(a) We saw in class that \(\mathbb{E}[X_n^2] = n \). Show that by Markov’s inequality, this implies that

\[
\Pr[|X_n| \geq 4\sqrt{n}] \leq \frac{1}{16}
\]

(b) Show that

\[
\Pr\left[|X_n| \geq \frac{1}{2}\sqrt{n}\right] \geq \frac{n}{12}
\]

Hint: Compute \(\mathbb{E}[X_n^4] \) and use Paley-Zygmund.

(c) Conclude that \(\Pr\left[\frac{1}{2}\sqrt{n} \leq |X_n| \leq 4\sqrt{n}\right] \geq 1% \).

(d) Show that the same conclusion holds if the steps \(\Delta_i \) are only 4-wise independent, instead of being completely uniform.