1. Let R be a relation with attributes $ABCD$. Consider the CQ algebra query

$$\pi_{AC}[\pi_{AB}(R) \bowtie \pi_{BC}(R)] \bowtie \pi_{CD}(R).$$

(a) (1 point) Convert the above query to a CQ query in rule form.

(b) (3 points) Using the chase, minimize the query obtained in (a) knowing that it is only applied to databases satisfying the FDs

$$A \rightarrow D, \ CD \rightarrow B, \ C \rightarrow A.$$

(c) (1 point) Construct an algebra query corresponding to the minimized CQ query obtained in (b).

2. (5 points) Let R be a relation over $ABCDE$. Reduce the number of joins in the query

$$\pi_{ACE}(R) \bowtie \pi_{ADE}(R) \bowtie \pi_{BCD}(R)$$

knowing that it is only applied to relations R satisfying the set of constraints

$$\{A \rightarrow B, E \rightarrow D, D \rightarrow E\}.$$

Proceed as in Problem 1: construct the rule corresponding to the query, chase and minimize its body, and then convert the result back to the algebra.

3. (2 points) Prove or disprove the following statement: it is possible for a set of MVDs to imply a non-trivial FD. More precisely, there exists a set Δ of MVDs and a non-trivial FD f such that $\Delta \models f$. (An FD is trivial if it is of the form $X \rightarrow Y$ where $Y \subseteq X$; such an FD is always true.) Provide a direct proof, without using the soundness and completeness of the axioms for FDs and MVDs.
4. (3 points) Prove the following inference rule (R has attributes ABC and S has attributes DEF):

If $R[AB] \subseteq S[DE], R[AC] \subseteq S[DF]$ and S satisfies $D \rightarrow E$
then $R[ABC] \subseteq S[DEF]$

5. (10 points) Let $CQ^=$ denote the set of conjunctive queries with equality (i.e. CQs allowing atoms $x = c$ and $x = y$ where x, y are variables and c is a constant). Let σ be a relational schema. We define the following dependency on instances over σ, called query inclusion dependency. For $q_1, q_2 \in CQ^=$ over schema σ, an instance I over σ satisfies $q_1 \subseteq q_2$ iff $q_1(I) \subseteq q_2(I)$. The implication problem for $CQ^=$ query inclusions is to determine, given a finite set Σ of $CQ^=$ query inclusion dependencies and an additional $CQ^=$ query inclusion dependency $q_1 \subseteq q_2$ over the same schema σ, whether $\Sigma \models q_1 \subseteq q_2$, meaning that every instance over σ satisfying all inclusions in Σ also satisfies $q_1 \subseteq q_2$.

(i) (4 points) Show that for every relation schema R and FD f over R, there exist $CQ^=$ queries q, q' such that for every instance I over R, $I \models f$ iff $q(I) \subseteq q'(I)$.

(ii) (2 points) Show that (i) does not hold if equality is not allowed.

(iii) (4 points) Show that the implication problem for $CQ^=$ query inclusion dependencies is undecidable.

(iv) (brownie point) Do you think the implication problem for CQ query inclusion dependencies (without equality) is decidable? (stream of consciousness intuition is ok here, as long as you don’t say something terribly wrong).