Divide-and-conquer, part 1: Mergesort

Russell Impagliazzo and Miles Jones
Thanks to Janine Tiefenbruck

http://cseweb.ucsd.edu/classes/sp16/cse21-bd/
April 13, 2016
Recursion

Last Time
1. Recursive algorithms and correctness
2. Coming up with recurrences
3. Using recurrences for time analysis

Today: Using recursion to design faster algorithms
Important example: Mergesort
Important sub-procedure: Merge
Example of "divide-and-conquer" algorithm design

In the textbook: Sections 5.4, 8.3
Merging sorted lists: WHAT

Given two sorted lists

\[a_1 \ a_2 \ a_3 \ \ldots \ a_k \]
\[b_1 \ b_2 \ b_3 \ \ldots \ b_\ell \]

produce a sorted list of length \(n=k+\ell \) which contains all their elements.

What's the result of merging the lists 1,4,8 and 2,3,10,20 ?

A. 1,4,8,2,3,10,20
B. 1,2,4,3,8,10,20
C. 1,2,3,4,8,10,20
D. 20,10,8,4,3,2,1
E. None of the above.
Merging sorted lists: HOW

Given two sorted lists

\[
\begin{align*}
a_1 & \ a_2 & \ a_3 & \ldots & \ a_k \\
b_1 & \ b_2 & \ b_3 & \ldots & \ b_\ell
\end{align*}
\]

produce a sorted list of length \(n=k+\ell\) which contains all their elements.

Design an algorithm to solve this problem
Merging sorted lists: HOW

Similar to Rosen p. 369

A recursive algorithm

Idea: Find the smallest element.
Put it first in the sorted list
``Delete” it from the list it came from
Merge the remaining parts of the lists recursively

If the input lists $a_1..a_k$
and $b_1...b_\ell$
Are sorted, which elements could be the smallest in the merged list?

α_1 or b_1
Merging sorted lists: HOW

Similar to Rosen p. 369

A recursive algorithm

```
procedure RMerge(a₁, ..., a_k, b₁, ..., b_ℓ: sorted lists)
    if first list is empty then return b₁, ..., b_ℓ
    if second list is empty then return a₁, ..., a_k
    if a₁ ≤ b₁ then
        return a₁ o RMerge(a₂, ..., a_k, b₁, ..., b_ℓ)
    else
        return b₁ o RMerge(a₁, ..., a_k, b₂, ..., b_ℓ)
```

“o” = concatenate

Find the smallest element

Merge the remaining parts
Merging sorted lists: WHY

A recursive algorithm
Focus on merging head elements, then rest.

procedure RMerge(a₁, ..., aₖ, b₁, ..., bₗ: sorted lists)
if first list is empty then return b₁, ..., bₗ
if second list is empty then return a₁, ..., aₖ
if a₁ ≤ b₁ then
 return a₁ ◦ RMerge(a₂, ..., aₖ, b₁, ..., bₗ)
else
 return b₁ ◦ RMerge(a₁, ..., aₖ, b₂, ..., bₗ)

Claim: returns a sorted list containing all elements from either list

Proof by induction on n = k + ℓ, the total input size
Merging sorted lists: WHY

Claim: returns a sorted list containing all elements from either list

Proof by induction on n, the total input size

```
procedure RMerge(a_1, \ldots, a_k, b_1, \ldots, b_\ell: \text{sorted lists})
  if first list is empty then return b_1, \ldots, b_\ell
  if second list is empty then return a_1, \ldots, a_k
  if a_1 \leq b_1 then
    return a_1 \circ RMerge(a_2, \ldots, a_k, b_1, \ldots, b_\ell)
  else
    return b_1 \circ RMerge(a_1, \ldots, a_k, b_2, \ldots, b_\ell)
```

What is the base case?
A. Both input lists are empty (n=0).
B. The first list is empty.
C. The second list is empty.
D. One of the lists is empty and the other has exactly one element (n=1).
E. None of the above.
Merging sorted lists: WHY

Claim: returns a sorted list containing all elements from either list

Proof by induction on n, the total input size

Base case: Suppose n=0. Then both lists are empty. So, in the first line we return the (trivially sorted) empty list containing all elements from the second list. But this list contains all (zero) elements from either list, because both lists are empty.
Merging sorted lists: WHY

Claim: returns a sorted list containing all elements from either list

Proof by induction on n, the total input size

Induction Step: Suppose $n \geq 1$ and $R\text{Merge}(a_1, \ldots, a_k, b_1, \ldots, b_\ell)$ returns a sorted list containing all elements from either list whenever $k + \ell = n-1$. What do we want to prove?

A. $R\text{Merge}(a_1, \ldots, a_k, a_{k+1}, b_1, \ldots, b_\ell)$ returns a sorted list containing all elements from either list.
B. $R\text{Merge}(a_1, \ldots, a_k, b_1, \ldots, b_\ell, b_{\ell+1})$ returns a sorted list containing all elements from either list.
C. $R\text{Merge}(a_1, \ldots, a_k, b_1, \ldots, b_\ell)$ returns a sorted list containing all elements from either list whenever $k + \ell = n$.

```plaintext
procedure R\text{Merge}(a_1, \ldots, a_k, b_1, \ldots, b_\ell: \text{sorted lists})
  if first list is empty then return $b_1, \ldots, b_\ell$
  if second list is empty then return $a_1, \ldots, a_k$
  if $a_1 \leq b_1$ then
    return $a_1 \circ R\text{Merge}(a_2, \ldots, a_k, b_1, \ldots, b_\ell)$
  else
    return $b_1 \circ R\text{Merge}(a_1, \ldots, a_k, b_2, \ldots, b_\ell)$
```


Merging sorted lists: WHY

Claim: returns a sorted list containing all elements from either list

Proof by induction on n, the total input size

Induction Step: Suppose n>=1 and \(RMerge(a_1, \ldots, a_k, b_1, \ldots, b_\ell): \) sorted lists
if first list is empty then return \(b_1, \ldots, b_\ell \)
if second list is empty then return \(a_1, \ldots, a_k \)
if \(a_1 \leq b_1 \) then
\(\text{return } a_1 \circ RMerge(a_2, \ldots, a_k, b_1, \ldots, b_\ell) \)
else
\(\text{return } b_1 \circ RMerge(a_1, \ldots, a_k, b_2, \ldots, b_\ell) \)

Case 1: one of the lists is empty.

Case 2: both lists are nonempty.
Merging sorted lists: WHY

Claim: returns a sorted list containing all elements from either list

Proof by induction on n, the total input size

Induction Step: Suppose \(n \geq 1 \) and \(R\text{Merge}(a_1, \ldots, a_k, b_1, \ldots, b_\ell) \) returns a sorted list containing all elements from either list whenever \(k + \ell = n - 1 \). We want to prove:

\[
R\text{Merge}(a_1, \ldots, a_k, b_1, \ldots, b_\ell) \text{ returns a sorted list containing all elements from either list whenever } k + \ell = n.
\]

Case 1: one of the lists is empty: similar to base case. In first or second line return rest of list.
Merging sorted lists: WHY

Claim: returns a sorted list containing all elements from either list

Proof by induction on n, the total input size

Case 2a: both lists nonempty and $a_1 \leq b_1$
Since both lists are sorted, this means a_1 is not bigger than

* any of the elements in the list a_2, \ldots, a_k
* any of the elements in the list b_1, \ldots, b_l

The total size of the input of $RMerge(a_2, \ldots, a_k, b_1, \ldots, b_l)$ is $(k-1) + l = n-1$ so by the IH, it returns a sorted list containing all elements from either list.

Prepending a_1 to the start maintains the order and gives a sorted list with all elements. ☺️
Merging sorted lists: WHY

Claim: returns a sorted list containing all elements from either list

Proof by induction on n, the total input size

Case 2b: both lists nonempty and $a_1 > b_1$
Same as before but reverse the roles of the lists. 😊
Merging sorted lists: WHEN

procedure $RMerge(a_1, \ldots, a_k, b_1, \ldots, b_\ell$: sorted lists)

$\theta(1)$ if first list is empty then return b_1, \ldots, b_ℓ

$\theta(1)$ if second list is empty then return a_1, \ldots, a_k

if $a_1 \leq b_1$ then

return $a_1 \circ RMerge(a_2, \ldots, a_k, b_1, \ldots, b_\ell)$

else

return $b_1 \circ RMerge(a_1, \ldots, a_k, b_2, \ldots, b_\ell)$

If $T(n)$ is the time taken by $RMerge$ on input of total size n,

$T(0) = c$

$T(n) = T(n-1) + c'$

where c, c' are some constants
Merging sorted lists: WHEN

If $T(n)$ is the time taken by $RMerge$ on input of total size n,

\[
\begin{align*}
T(0) &= c \\
T(n) &= T(n-1) + c'
\end{align*}
\]

where c, c' are some constants

What's a solution to this recurrence equation?
A. $T(n) \in O(T(n - 1))$
B. $T(n) \in O(n)$
C. $T(n) \in O(n^2)$
D. $T(n) \in O(2^n)$
E. None of the above.
Merging sorted lists: WHEN

If $T(n)$ is the time taken by $RMerge$ on input of total size n,

\[
\begin{align*}
T(0) &= c \\
T(n) &= T(n-1) + c'
\end{align*}
\]

where c, c' are some constants

This the same recurrence as we solved Monday for counting 00’s in a string. So we can just remember that this works out to $T(n) \in \theta(n)$
"We split into two groups and organized each of the groups, then got back together and figured out how to interleave the groups in order."
A divide & conquer (recursive) strategy:

Divide list into two sub-lists
Recursively sort each sublist
Conquer by merging the two sorted sublists into a single sorted list
Merge Sort: HOW

Similar to Rosen p. 368

\begin{verbatim}
procedure MergeSort(a_1, \ldots, a_n)
 if \(n > 1 \) then
 m := \lfloor n/2 \rfloor
 L_1 := a_1, \ldots, a_m
 L_2 := a_{m+1}, \ldots, a_n
 return RMerge(MergeSort(L_1), MergeSort(L_2))
 else return a_1, \ldots, a_n
\end{verbatim}

Use RMerge as subroutine
Claim that result is a sorted list containing all elements.

Proof by **strong** induction on n:

Why do we need **strong** induction?
A. Because we're breaking the list into two parts.
B. Because the input size of the recursive function call is less than n.
C. Because we're calling the function recursively twice.
D. Because we're using a subroutine, \(R\text{Merge} \).
E. Because the input size of the recursive function call is less than n-1.

```plaintext
procedure MergeSort(a_1, \ldots, a_n)
    if \( n > 1 \) then
        \( m := \lfloor n/2 \rfloor \)
        \( L_1 := a_1, \ldots, a_m \)
        \( L_2 := a_{m+1}, \ldots, a_n \)
        return \( R\text{Merge}(\text{MergeSort}(L_1), \text{MergeSort}(L_2)) \)
    else return \( a_1, \ldots, a_n \)
```
Merge Sort: WHY

procedure MergeSort(a_1, \ldots, a_n)
 if n > 1 then
 m := \lceil n/2 \rceil
 L_1 := a_1, \ldots, a_m
 L_2 := a_{m+1}, \ldots, a_n
 return RMerge(MergeSort(L_1), MergeSort(L_2))
 else return a_1, \ldots, a_n

Claim that result is a sorted list containing all elements.

Proof by strong induction on n:

Base case: Suppose n=0.

Suppose n=1.
Merge Sort: WHY

Claim that result is a sorted list containing all elements.

Proof by strong induction on n:

Base case: Suppose n=0. Then, in the else branch, we return the empty list, (trivially) sorted.

Suppose n=1. Then, in the else branch, we return \(a_1\), a (trivially) sorted list containing all elements. 😊
Merge Sort: WHY

procedure MergeSort(a₁, …, aₙ)
 if n > 1 then
 m := ⌊n/2⌋
 L₁ := a₁, …, aₘ
 L₂ := aₘ₊₁, …, aₙ
 return RMerge(MergeSort(L₁), MergeSort(L₂))
 else return a₁, …, aₙ

Claim that result is a sorted list containing all elements.

Induction step: Suppose n>1. Assume, as the strong induction hypothesis, that

MergeSort correctly sorts all lists with k elements, for any 0≤k<n.

Goal: prove that MergeSort(a₁, …, aₙ) returns a sorted list containing all n elements.
IH: MergeSort correctly sorts all lists with k elements, for any 0≤k<n.

Goal: prove that MergeSort(a₁, ..., aₙ) returns a sorted list containing all n elements.

Since n>1, in the if branch we return RMerge(MergeSort(L₁), MergeSort(L₂)), where L₁ and L₂ each have no more than (n/2) + 1 elements and together they contain all elements.

By IH, each of MergeSort(L₁) and MergeSort(L₂) are sorted and by the correctness of Merge, the returned list is a sorted list containing all the elements. 😊
Merge Sort: WHEN

procedure MergeSort(a_1, \ldots, a_n)
 if \ n > 1 then
 \(\theta(1) \) \ m := \lfloor n/2 \rfloor \)
 say \(\theta(n) \) \(L_1 := a_1, \ldots, a_m \)
 say \(\theta(n) \) \(L_2 := a_{m+1}, \ldots, a_n \)
 review \(T_{\text{Merge}}(n/2 + n/2) \) return \(R\text{Merge}(\text{MergeSort}(L_1), \text{MergeSort}(L_2)) \)
 else return \(a_1, \ldots, a_n \)

If \(T_{\text{MS}}(n) \) is runtime of \(\text{MergeSort} \) on list of size \(n \),

\[
T_{\text{MS}}(0) = c_0 \quad \quad T_{\text{MS}}(1) = c' \\
T_{\text{MS}}(n) = 2T_{\text{MS}}(n/2) + T_{\text{Merge}}(n) + c'' n
\]

where \(c_0, c', c'' \) are some constants
Merge Sort: WHEN

\[T_{\text{Merge}}(n) \text{ is in } O(n) \]

\[
\text{procedure } \text{MergeSort}(a_1, \ldots, a_n) \\
\quad \text{if } n > 1 \text{ then}
\]
\[
\theta(1) \; m := \lfloor n/2 \rfloor
\]
\[
\wedge \; L_1 := a_1, \ldots, a_m
\]
\[
\wedge \; L_2 := a_{m+1}, \ldots, a_n
\]
\[
T_{\text{Merge}}(n/2 + n/2) \; \text{return} \; R\text{Merge}(\text{MergeSort}(L_1), \text{MergeSort}(L_2))
\]
\[
\text{else return } a_1, \ldots, a_n \quad T_{\text{MS}}(n/2) \quad T_{\text{MS}}(n/2)
\]

If \(T_{\text{MS}}(n) \) is runtime of \(\text{MergeSort} \) on list of size \(n \),

\[
T_{\text{MS}}(0) = c_0 \quad T_{\text{MS}}(1) = c' \quad T_{\text{MS}}(n) = 2T_{\text{MS}}(n/2) + cn
\]

where \(c_0, c, c' \) are some constants
Merging sorted lists: WHEN

If $T_{\text{MS}}(n)$ is runtime of MergeSort on list of size n,

$$
T_{\text{MS}}(0) = c_0 \quad T_{\text{MS}}(1) = c' \\
T_{\text{MS}}(n) = 2T_{\text{MS}}(n/2) + cn
$$

where c_0, c, c' are some constants

Solving the recurrence by **unravelling**:

$$
T_{\text{MS}}(n) = 2T_{\text{MS}}(n/2) + cn \\
= 2(2T_{\text{MS}}(n/4) + c(n/2)) = 4T_{\text{MS}}(n/4) + 2c(n/2) + cn = 4T_{\text{MS}}(n/4) + 2cn \\
= 4(2T_{\text{MS}}(n/8) + c(n/4)) + 2cn = 8T_{\text{MS}}(n/8) + 3cn \\
\vdots \\
= 2^kT_{\text{MS}}(n/2^k) + k(cn)$$
Merging sorted lists: WHEN

Solving the recurrence by **unravelling**:

\[T_{MS}(n) = 2T_{MS}(n/2) + cn \]

\[= 2 \left(2T_{MS}(n/4) + c(n/2) \right) = 4T_{MS}(n/4) + 2c(n/2) + cn = 4T_{MS}(n/4) + 2cn \]

\[= 4 \left(2T_{MS}(n/8) + c(n/4) \right) + 2cn = 8T_{MS}(n/8) + 3cn \]

\[\vdots \]

\[= 2^k T_{MS}(n/2^k) + k(cn) \]

What value of \(k \) should we substitute to finish unravelling (i.e. to get to the base case)?

A. \(k \)
B. \(n \)
C. \(2^n \)
D. \(\log_2 n \)
E. None of the above.
Solving the recurrence by unavelling:

\[T_{MS}(n) = 2T_{MS}(n/2) + cn \]

\[= 2 \left(2T_{MS}(n/4) + c(n/2) \right) = 4T_{MS}(n/4) + 2c(n/2) + cn = 4T_{MS}(n/4) + 2cn \]

\[= 4 \left(2T_{MS}(n/8) + c(n/4) \right) + 2cn = 8T_{MS}(n/8) + 3cn \]

\[\vdots \]

\[= 2^k T_{MS}(n/2^k) + k(cn) \]

With \(k = \log_2 n \), \(T_{MS}(n/2^k) = T_{MS}(n/n) = T_{MS}(1) = c' : \)

\[T_{MS}(n) = 2^{\log n} T_{MS}(1) + (\log_2 n)(cn) = c'n + c n \log_2 n \]

\[\in \Theta(n \log n) \]
In terms of worst-case performance, Merge Sort outperforms all other sorting algorithms we've seen.

<table>
<thead>
<tr>
<th>n</th>
<th>n^2</th>
<th>n log n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000</td>
<td>1 000 000</td>
<td>~10 000</td>
</tr>
<tr>
<td>1 000 000</td>
<td>1 000 000 000 000</td>
<td>~20 000 000</td>
</tr>
</tbody>
</table>

Divide and conquer wins big!
Divide & Conquer

What we saw:

Dividing into subproblems each with a fraction of the size was a big win

Will this work in other contexts?
Given two n-digit (or bit) integers
\[a = a_{n-1} \ldots a_1 a_0 \]
and
\[b = b_{n-1} \ldots b_1 b_0 \]
return the decimal (or binary) representation of their product.

\[
\begin{array}{c}
25 \\
\times 17 \\
\hline
175 \\
+ 250 \\
\hline
425
\end{array}
\]
Multiplication: HOW

Given two n-digit (or bit) integers

\[a = a_{n-1} \ldots a_1 a_0 \]

and

\[b = b_{n-1} \ldots b_1 b_0 \]

return the decimal (or binary) representation of their product.

\[
\begin{array}{r}
25 \\
\times 17 \\
\hline
175 \\
+ 250 \\
\hline
425
\end{array}
\]

Compute partial products (using single digit multiplications), shift, then add.

How many operations? $O(n^2)$
Multiplication: HOW

Divide and conquer? Divide n-digit numbers into two n/2-digit numbers.

If $a = 12345678$ and $b = 24681357$, we can write

$$
a = (1234) \times 10^4 + (5678)
$$
$$
b = (2468) \times 10^4 + (1357)
$$

To multiply:

$$
(1234) \times 10^4 + (5678) \times (2468) \times 10^4 + (1357)
= (1234)(2468) \times 10^8 + (1234)(1357) \times 10^4 + (2468)(5678) \times 10^4 + (1357)(5678)
$$
Multiplication: WHEN

One 8-digit multiplication

\[
\begin{pmatrix}
12345678 \\
24681357
\end{pmatrix}
\]

\[
= \left((1234) \times 10^4 + (5678) \right) \left((2468) \times 10^4 + (1357) \right) = (1234)(2468) \times 10^8 + (1234)(1357) \times 10^4 + (2468)(5678) \times 10^4 + (1357)(5678)
\]

Four 4-digit multiplications (plus some shifts, sums)
Multiplication: WHEN

One 8-digit multiplication

\[
\begin{pmatrix}
12345678 \\
\end{pmatrix}
\begin{pmatrix}
24681357 \\
\end{pmatrix}
= \left(\begin{pmatrix}
1234 \\
\end{pmatrix} \times 10^4 + \begin{pmatrix}
5678 \\
\end{pmatrix} \right)
\left(\begin{pmatrix}
2468 \times 10^4 + \begin{pmatrix}
1357 \\
\end{pmatrix} \right)
\]

\[
(1234)(2468) \times 10^8 + (1234)(1357) \times 10^4 + (2468)(5678) \times 10^4 + (1357)(5678)
\]

Four 4-digit multiplications (plus some shifts, sums)

\[
T(n) = 4 \, T(n/2) + cn \quad \text{with} \quad T(1) = c' \quad \text{and} \quad c, c' \text{ constants}
\]
Multiplication: WHEN

\[T(n) = 4 \cdot T(n/2) + cn \quad \text{with } T(1) = c' \quad \text{and } c, c' \text{ constants} \]

\[
T(n) = 4T(n/2) + cn \\
= 4\left(4T(n/4) + c(n/2)\right) + cn = 16T(n/4) + 3cn \\
= 16\left(4T(n/8) + c(n/4)\right) + 3cn = 64T(n/8) + 7cn \\
\vdots \\
= 4^k T(n/2^k) + (2^k - 1)cn \quad \text{Unravelling} \]
Multiplication: WHEN

\[T(n) = 4 T(n/2) + cn \]
with \(T(1) = c' \) and \(c, c' \) constants

\[
T(n) = 4T(n/2) + cn \\
= 4(4T(n/4) + cn/2) + cn = 16T(n/4) + 3cn \\
= 16(4T(n/8) + cn/4) + 3cn = 64T(n/8) + 7cn \\
\vdots \\
= 4^kT(n/2^k) + (2^k - 1)cn
\]

Unravelling

Substitute \(k = \log_2 n \)

\[T(n) = 4^{\log n} T(1) + (2^{\log n} - 1) cn \]

What's \(2^{\log n} \)?

A. \(n \)
B. \(n^2 \)
C. \(2^n \)
D. 1
E. None of the above
Multiplication: WHEN

T(n) = 4 T(n/2) + cn

with T(1) = c' and c, c' constants

Unravelling

Substitute \(k = \log_2 n \)

\[
T(n) = 4^k T(n/2^k) + (2^k - 1) cn
\]

What's \(4^{\log n} \)?

A. n
B. \(n^2 \)
C. \(2^n \)
D. 2n
E. None of the above
Multiplication: WHEN

\[T(n) = 4 \, T(n/2) + cn \quad \text{with} \quad T(1) = c' \quad \text{and} \quad c, \, c' \text{ constants} \]

\[
T(n) = 4T(n/2) + cn \\
= 4 \left(4T(n/4) + c(n/2) \right) + cn = 16T(n/4) + 3cn \\
= 16 \left(4T(n/8) + c(n/4) \right) + 3cn = 64T(n/8) + 7cn \\
\vdots \\
= 4^k T(n/2^k) + (2^k - 1)cn
\]

Substitute \(k = \log_2 n \) \quad T(n) = c' n^2 + (n-1) cn \in \Theta(n^2) \hspace{1cm} \text{Oh no!!!}
Multiplication: HOW

Insight: replace one (of the 4) multiplications by (linear time) subtraction

Andrey Kolmogorov 1903 - 1987

Anatoly Karatsuba 1937 - 2008

Rosen p. 528
Multiplication: HOW

\[
\begin{pmatrix}
12345678 \\
24681357
\end{pmatrix}
\begin{pmatrix}
12345678 \\
24681357
\end{pmatrix}
= \left(1234 \times 10^4 + 5678\right) \left(2468 \times 10^4 + 1357\right)
= (1234)(2468) \times 10^8 + (1234)(1357) \times 10^4 + (2468)(5678) \times 10^4 + (1357)(5678)

(1234)(2468) \times (10^8+10^4) + [(1234) - (5678)][(1357)-(2468)] \times 10^4 + (1357)(5678) \times (10^4+1)

Insight: replace one (of the 4) multiplications by (linear time) subtraction
Instead of

\[T(n) = 4 \, T(n/2) + cn \quad \text{with} \quad T(1) = c' \quad \text{and} \quad c, \, c' \text{ constants} \]

get

\[T_K(n) = 3 \, T_K(n/2) + d \, n \quad \text{with} \quad T_K(1) = d' \quad \text{and} \quad d, \, d' \text{ constants} \]

Unravelling is similar but with 3s instead of 4s

\[T_K(n) \in \Theta(3^{\log_2 n}) \]
Karatsuba Multiplication: WHEN

\[3^{\log n} = (2^{\log 3})^{\log n} = (2^{\log n})^{\log 3} = n^{\log 3} = n^{1.58...} \]

so definitely better than \(n^2 \)

Progress since then …

1963: Toom and Cook develop series of algorithms that are time \(O(n^{1+\epsilon}) \).
2007: Furer uses number theory to achieve the best known time for multiplication.
2016: Still open whether there is a linear time algorithm for multiplication.