CSE 202: Design and Analysis of Algorithms

Lecture 8
Next: Network Flows
Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), how much oil can we ship from s to t?

An s-t flow is a function: E → R such that:
- 0 <= f(e) <= c(e), for all edges e
- flow into node v = flow out of node v, for all nodes v except s and t,

\[\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e) \]

Size of flow f = Total flow out of s = total flow into t

The Max Flow Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), find an s-t flow of maximum size
The Max Flow Problem: Given directed graph $G=(V,E)$, source s, sink t, edge capacities $c(e)$, find an s-t flow of maximum size

An s-t Cut partitions nodes into groups = (L, R) s.t. s in L, t in R

Capacity of a cut $(L, R) = \sum_{(u,v) \in E, u \in L, v \in R} c(u, v)$

Flow across $(L, R) = \sum_{(u,v) \in E, u \in L, v \in R} f(u,v) - \sum_{(v,u) \in E, u \in L, v \in R} f(v,u)$

Property: For any flow f, any s-t cut (L, R), $\text{size}(f) \leq \text{capacity}(L, R)$

Proof: For any cut (L,R), Flow Across (L,R) cannot exceed capacity(L,R)

From flow conservation constraints, $\text{size}(f) = \text{flow across}(L,R) \leq \text{capacity}(L,R)$

Max-Flow \leq Min-Cut
The Max Flow Problem: Given directed graph $G=(V,E)$, source s, sink t, edge capacities $c(e)$, find an s-t flow of maximum size.

An s-t Cut partitions nodes into groups $= (L, R)$ such that s in L, t in R.

Capacity of a cut $(L, R) = \sum_{(u,v) \in E, u \in L, v \in R} c(u, v)$

Flow across $(L, R) = \sum_{(u,v) \in E, u \in L, v \in R} f(u, v) - \sum_{(v,u) \in E, u \in L, v \in R} f(v, u)$

Property: For any flow f, any s-t cut (L, R), $\text{size}(f) \leq \text{capacity}(L, R)$

Proof: For any cut (L, R), Flow Across (L, R) cannot exceed capacity (L, R).
From flow conservation constraints, $\text{size}(f) = \text{flow across}(L, R) \leq \text{capacity}(L, R)$

$\text{Max-Flow} \leq \text{Min-Cut}$

In our example: Size of $f = 3$, Capacity of Cut $(s, V - s) = 3$.
Thus, a Min Cut is a certificate of optimality for a flow.
Ford-Fulkerson algorithm

FF Algorithm: Start with zero flow
Repeat:
 - Find a path from s to t along which flow can be increased
 - Increase the flow along that path

Example

First choose:

Next choose:

But what if we first chose:

Then we’d have to allow:

cancels out existing flow
Ford-Fulkerson, continued

FF Algorithm: Start with zero flow
Repeat:
 - Find a path from s to t along which flow can be increased
 - Increase the flow along that path

In any iteration, we have some flow \(f \) and we are trying to improve it. How to do this?

1: Construct a residual graph \(G_f \) (“what’s left to take?”)

\[G_f = (V, E_f) \text{ where } E_f \subseteq E \cup E^R \]

For any \((u,v) \) in \(E \), \(c_f(u,v) = c(u,v) - f(u,v) \)

any \((u,v) \) in \(E^R \), \(c_f(u,v) = f(v,u) \)

[ignore edges with zero \(c_f \): don’t put them in \(E_f \)]

2: Find a path from s to t in \(G_f \)
3: Increase flow along this path, as much as possible
Example: Round 1

Construct residual graph $G_f = (V, E_f)$

$E_f \subseteq E \cup E^R$

For any (u,v) in E or E^R,

$c_f(u,v) = c(u,v) - f(u,v) + f(v,u)$

Find a path from s to t in G_f

Augment f along this path
Construct residual graph $G_f = (V, E_f)$

$E_f \subseteq E \cup E^R$

For any (u,v) in E or E^R,

$c_f(u,v) = c(u,v) - f(u,v) + f(v,u)$

Find a path from s to t in G_f

Augment f along this path
Example: Round 3

Construct residual graph \(G_f = (V, E_f) \)
\[
E_f \subseteq E \cup E^R
\]
For any \((u,v)\) in \(E\) or \(E^R\),
\[
c_f(u,v) = c(u,v) - f(u,v) + f(v,u)
\]
Find a path from \(s\) to \(t\) in \(G_f\)
Augment \(f\) along this path
Example: Round 3

Construct residual graph $G_f = (V, E_f)$

$E_f \subseteq E \cup E^R$

For any (u,v) in E or E^R,

c\(_f\)(u,v) = c(u,v) - f(u,v) + f(v,u)$

Find a path from s to t in G_f

Augment f along this path
Analysis: Correctness

FF algorithm gives us a valid flow. But is it the maximum possible flow?

Consider final residual graph $G_f = (V, E_f)$
Let $L =$ nodes reachable from s in G_f and let $R =$ rest of nodes $= V - L$
So $s \in L$ and $t \in R$

Edges from L to R must be at full capacity
Edges from R to L must be empty
Therefore, flow across cut (L,R) is

$$\sum_{(u,v) \in E, u \in L, v \in R} c(u, v)$$

Thus, $\text{size}(f) = \text{capacity}(L,R)$

Recall: for any flow and any cut, $\text{size}(\text{flow}) \leq \text{capacity}(\text{cut})$

Therefore f is the max flow and (L,R) is the min cut!

Thus, Max Flow = Min Cut
Analysis: efficiency

FF Algorithm: Start with zero flow
Repeat:
 - Find a path from s to t along which flow can be increased
 - Increase the flow along that path

A **hillclimbing** procedure

Flow size:

- max flow
- 0

Each iteration is fast (O(|E|) time).

How many iterations are needed to reach the maximum flow?

Example:

![Flow network](image)

#iterations can be Max Capacity
Analysis: efficiency

FF Algorithm: Start with zero flow

Repeat:
- Find a path from s to t along which flow can be increased
- Increase the flow along that path

A hillclimbing procedure

Flow size:

```
0
```

max flow

Each iteration is fast ($O(|E|)$ time).

How many iterations are needed to reach the maximum flow?

Example:

```
s 10^6 1 10^6 10^6
```

```
a
```

```
10^6 b
```

```
t
```

#iterations can be Max Capacity (with integer capacities)
An Observation: Integrality

Integral Flows: A flow f is integral if $f(e)$ is an integer for all e

Example:

Property: If all edge capacities are integers, then, there is a max flow f which is integral.

Proof: If the edge capacities are integers, then, the FF algorithm always finds an integral flow.
The FF algorithm also always finds a max flow.

Note: All max flows are not necessarily integral flows!
How to improve the efficiency?

• Ford-Fulkerson Style Algorithms:
 • Edmonds Karp
 • Capacity Scaling

• Preflow-Push
Edmonds Karp

FF Algorithm: Start with zero flow
Repeat:
 - Find a path from s to t along which flow can be increased
 - Increase the flow along that path

Bad Example for FF:

```
  s    a    b    t
  10^6 10^6 10^6 10^6
```

Bad Path Sequence:
(s, a, b, t), (s, b, a, t), (s, a, b, t),...

EK Path Selection: Find the **shortest path** along which flow can be increased
(shortest path = shortest in terms of #edges)

It can be shown that this requires only $O(|V||E|)$ iterations (Proof not in this class)
Running Time: $O(|V| |E|^2)$
Edmonds Karp

EK Algorithm: Start with zero flow
Repeat:
- Find the shortest path from s to t along which flow can be increased
- Increase the flow along that path

Bad Example for FF:

Iteration 1

Iteration 2
How to improve the efficiency?

- Ford-Fulkerson Style Algorithms:
 - Edmonds Karp
 - Capacity Scaling
- Preflow-Push
Capacity Scaling

FF Algorithm: Start with zero flow
Repeat:
 - Find a path from s to t along which flow can be increased
 - Increase the flow along that path

Bad Example:

```
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>10^6</td>
<td>10^6</td>
</tr>
<tr>
<td>b</td>
<td>10^6</td>
<td>10^6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

Bad Path Sequence:
(s, a, b, t), (s, b, a, t), (s, a, b, t), ...

Capacity Scaling: Find paths of high capacity first between s and t
Capacity Scaling

\(C_{\text{max}} = \text{max capacity edge. Start with } D = C_{\text{max}}\)

Start with zero flow

While \(D \geq 1\), repeat:

\(G_f(D) = \text{D-residual graph}\)

While there is a path from \(s\) to \(t\) in \(G_f(D)\) along which flow can be increased

Increase flow along that path

Update \(G_f(D)\)

\(D = D/2\)

D-Residual Graph: Subgraph of residual graph with only edges with capacity \(\geq D\)

Example: For \(f = 0\)
Capacity Scaling: Correctness

$C_{\text{max}} = \text{max capacity edge. Start with } D = C_{\text{max}}$

Start with zero flow

While $D \geq 1$, repeat:

$G_f(D) = D$-residual graph

While there is a path from s to t in $G_f(D)$ along which flow can be increased

Increase flow along that path

Update $G_f(D)$

$D = D/2$

D-Residual Graph: Subgraph of residual graph with only edges with capacity $\geq D$

Property: If all edge capacities are integers, algorithm outputs a max flow

Proof: At $D=1$, $G_f(D) = G_f$. So on termination, $G_f(D)$ has no more paths from s to t
Capacity Scaling: Running Time

$C_{\text{max}} = \text{max capacity edge. Start with } D = C_{\text{max}}$

Start with zero flow

While $D \geq 1$, repeat:

1. $G_f(D) = \text{D-residual graph}$
2. While there is a path from s to t in $G_f(D)$ along which flow can be increased
 - Increase flow along that path
 - Update $G_f(D)$
3. $D = D/2$

D-Residual Graph: Subgraph of residual graph with only edges with capacity $\geq D$

Property 1: While loop 1 is executed $1 + \log_2 C_{\text{max}}$ times

Property 2: At the end of a D-scaling phase, $\text{size(max flow)} \leq \text{size(current flow)} + D|E|$

Proof: Let $L = \text{nodes reachable from s in } G_f(D)$ and let $R = \text{rest of nodes } = V - L$

- #edges in $G_f(D)$ in the (L, R) cut = 0
- #edges in G_f in the (L,R) cut $\leq |E|$
- Capacity of each such edge $< D$

Thus, $\text{size(max flow)} \leq \text{capacity}(L,R) \leq \text{size(f)} + D|E|$
Capacity Scaling: Running Time

\[C_{\text{max}} = \text{max capacity edge}. \text{ Start with } D = C_{\text{max}} \]

Start with zero flow

While \(D \geq 1 \), repeat:

1. \(G_f(D) = \text{D-residual graph} \)
2. While there is a path from \(s \) to \(t \) in \(G_f(D) \) along which flow can be increased:
 - Increase flow along that path
 - Update \(G_f(D) \)

\[D = D/2 \]

D-Residual Graph: Subgraph of residual graph with only edges with capacity \(\geq D \)

Property 1: While loop 1 is executed \(1 + \log_2 C_{\text{max}} \) times

Property 2: At the end of a \(D \)-scaling phase, \(\text{size}(\text{max flow}) \leq \text{size}(\text{current flow}) + D|E| \)

Property 3: For any \(D \), \#iterations of loop 2 in the \(D \)-scaling phase \(\leq 2|E| \)

Total Running Time: \(O(|E|^2(1 + \log_2 C_{\text{max}})) \)

(Recall: Time to find a flow path in a residual graph = \(O(|E|) \))
How to improve the efficiency?

- Ford-Fulkerson Style Algorithms:
 - Edmonds Karp
 - Capacity Scaling

- Preflow-Push
Preflow-Push

Main Idea:
- Each node has a label, which is a potential
- Route flow from high to low potential

Idea: Route flow along blue edges
Preflow: A function \(f: E \rightarrow \mathbb{R} \) is a preflow if:

1. **Capacity Constraints:** \(0 \leq f(e) \leq c(e) \)
2. Instead of conservation constraints:

\[
\text{Excess}(v) = \sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) \geq 0
\]

Example

\[\begin{array}{c}
\text{G} \\
\end{array}\]

\[\begin{array}{c}
\text{excess} = 1 \\
f \end{array}\]
Preflow-Push: Two Operations

Preflow: A function $f: E \rightarrow \mathbb{R}$ is a preflow if:
1. Capacity Constraints: $0 \leq f(e) \leq c(e)$
2. Instead of conservation constraints:
 \[\sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) \geq 0 \]

Excess$(v) = \sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e)$

Labeling h assigns a non-negative integer label $h(v)$ to all v in V

Push(v, w): Applies if excess$(v) > 0$, $h(w) < h(v)$, (v, w) in E_f
 - $q = \min(\text{excess}(v), c_f(v, w))$
 - Add q to $f(v, w)$

Relabel(v): Applies if excess$(v) > 0$, for all w s.t (v, w) in E_f, $h(w) \geq h(v)$
 - Increase $h(v)$ by 1
Pre-Flow Push: The Algorithm

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for all other \(v \)
Start with preflow \(f \): \(f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), for all other edges \(e \)

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w)\) in \(E_f \) such that push\((v, w)\) can be applied
 Push\((v, w)\)
 Else
 Relabel\((v)\)

Push\((v, w)\): Applies if \(\text{excess}(v) > 0, h(w) < h(v), (v, w) \) in \(E_f \)
 \(q = \min(\text{excess}(v), c_f(v, w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel\((v)\): Applies if \(\text{excess}(v) > 0 \), for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by 1
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
 \(\text{Push}(v, w) \)
Else
 \(\text{Relabel}(v) \)

Push(\(v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v, w)) \)
Add \(q \) to \(f(v, w) \)

Relabel(\(v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t \((v, w) \) in \(E_f \), \(h(w) >= h(v) \)
Increase \(h(v) \) by 1

Diagram:

\(G \)

- \(s \) to \(a \) with 6
- \(b \) to \(a \) with 5
- \(s \) to \(b \) with 6
- \(b \) to \(t \) with 6
- \(a \) to \(t \) with 1

\(f, h \)

- \(s \) to \(a \) with 6
- \(a \) to \(t \) with 0
- \(b \) to \(a \) with 6
- \(a \) to \(t \) with 0

\(G_f \)

- \(s \) to \(a \) with 6
- \(a \) to \(t \) with 5
- \(b \) to \(a \) with 5

Labels

- \(s \) has label 0
- \(t \) has label 6
- \(a \) has label 6
- \(b \) has label 0

Excesses

- \(s \) has excess 6
- \(t \) has excess 0
- \(a \) has excess 6
- \(b \) has excess 0
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
 Push(v, w)
Else
 Relabel(v)

Push(v, w):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v,w)) \)
Add \(q \) to \(f(v, w) \)

Relabel(v):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

\(G_f \) (before)

\(f, h \)

\(G_f \)
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
 \(\text{Push}(v, w) \)
Else
 \(\text{Relabel}(v) \)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v,w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by \(1 \)

\(G_f \) (before)

\[
\begin{array}{cccc}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 5 & 1 & 6 \\
6 & 5 & 1 & 6 \\
\end{array}
\]

\(f, h \)

\[
\begin{array}{cccc}
\text{s} & \text{a} & \text{b} & \text{t} \\
0 & 4 & 6 & 0 \\
6 & 6 & 6 & 6 \\
\end{array}
\]

\(G_f \)

\[
\begin{array}{cccc}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 5 & 1 & 6 \\
6 & 5 & 1 & 6 \\
\end{array}
\]
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
Push\((v, w)\)
Else
Relabel\((v)\)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v,w)) \)
Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t. \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

\(G_f \) (before)

\(f, h \)

\(G_f \)
Pre-Flow Push: An Example

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v
Start with preflow f: $f(e) = c(e)$ for $e = (s, v), f(e) = 0$, otherwise

While there is a node (other than t) with positive excess
Pick a node v with $\text{excess}(v) > 0$
If there is an edge (v, w) in E_f s.t. $\text{push}(v, w)$ applies
 $\text{Push}(v, w)$
Else
 $\text{Relabel}(v)$

Push(v, w):
Applies if $\text{excess}(v) > 0, h(w) < h(v)$
$q = \min(\text{excess}(v), c_f(v,w))$
Add q to $f(v, w)$

Relabel(v):
Applies if $\text{excess}(v) > 0$ and for all w s.t (v, w) in E_f, $h(w) \geq h(v)$
Increase $h(v)$ by 1
Pre-Flow Push: An Example

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v

Start with preflow f: $f(e) = c(e)$ for $e = (s, v)$, $f(e) = 0$, otherwise

While there is a node (other than t) with positive excess
- Pick a node v with $\text{excess}(v) > 0$
- If there is an edge (v, w) in E_f s.t. $\text{push}(v, w)$ applies
 - $\text{Push}(v, w)$
- Else
 - $\text{Relabel}(v)$

$\text{Push}(v, w)$:
- Applies if $\text{excess}(v) > 0$, $h(w) < h(v)$
- $q = \min(\text{excess}(v), c_f(v, w))$
- Add q to $f(v, w)$

$\text{Relabel}(v)$:
- Applies if $\text{excess}(v) > 0$ and for all w s.t. (v, w) in E_f, $h(w) \geq h(v)$
- Increase $h(v)$ by 1

G_f (before)

\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 1 & 5 & 6
\end{array}
\]

\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 1 & 5 & 6
\end{array}
\]

\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 1 & 5 & 6
\end{array}
\]

G_f

\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 1 & 5 & 6
\end{array}
\]

G_f

\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 1 & 5 & 6
\end{array}
\]

G_f

\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 1 & 5 & 6
\end{array}
\]
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s. t. push\((v, w)\) applies
Push\((v, w)\)
Else
Relabel\((v)\)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v, w)) \)
Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all
\(w \) s.t \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

\[G_f \text{ (before)} \]

\[f, h \]

\[G_f \]
Pre-Flow Push: An Example

Start with labeling: \(h(s) = 0, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(excess(v) > 0 \)
If there is an edge \((v, w)\) in \(E_f \) s.t. \(push(v, w) \) applies
 Push\((v, w)\)
Else
 Relabel\((v)\)

Push\((v, w)\):
Applies if \(excess(v) > 0, h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v, w)) \)
Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(excess(v) > 0 \) and for all \(w \) s.t \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by \(1 \)

\(G_f \) (before)
\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 6 & 5 & 5 \\
\end{array}
\]

\(f, h \)
\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
0 & 6 & 6 & 6 \\
4 & 1 & 5 & 5 \\
\end{array}
\]

\(G_f \)
\[
\begin{array}{c}
\text{s} & \text{a} & \text{b} & \text{t} \\
6 & 6 & 5 & 5 \\
\end{array}
\]

Labels

Excesses
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess

Pick a node \(v \) with excess(\(v \)) > 0

If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies

\(\text{Push}(v, w) \)

Else

\(\text{Relabel}(v) \)

\(\text{Push}(v, w): \)
Applies if \(\text{excess}(v) > 0, \text{h}(w) < \text{h}(v) \)
\(q = \min(\text{excess}(v), c_f(v, w)) \)
Add \(q \) to \(f(v, w) \)

\(\text{Relabel}(v): \)
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t \((v, w) \) in \(E_f \), \(\text{h}(w) \geq \text{h}(v) \)
Increase \(\text{h}(v) \) by 1

\(G_f \) (before)

\(f, h \)

\(G_f \)
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies

\[\text{Push}(v, w) \]
Else

\[\text{Relabel}(v) \]

\[\text{Relabel}(v): \text{Applies if } \text{excess}(v) > 0 \text{ and for all } w \text{ s.t } (v, w) \text{ in } E_f, h(w) \geq h(v) \text{, Increase } h(v) \text{ by } 1 \]

Push(\(v, w) \):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\[q = \min(\text{excess}(v), c_f(v, w)) \]
Add \(q \) to \(f(v, w) \)

Labels

Excesses
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
 \[\text{Push}(v, w) \]
Else
 \[\text{Relabel}(v) \]

\[\text{Push}(v, w): \]
Applies if \(\text{excess}(v) > 0, \) \(h(w) < h(v) \)
\[q = \min(\text{excess}(v), c_f(v, w)) \]
Add \(q \) to \(f(v, w) \)

\[\text{Relabel}(v): \]
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t. \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

\(G_f \) (before)

\(G_f \)

Labels

Excesses

\[f, h \]
Pre-Flow Push: An Example

Start with labeling:
\[h(s) = n, h(t) = 0, h(v) = 0, \text{for other } v \]

Start with preflow \(f \):
\[f(e) = c(e) \text{ for } e = (s, v), f(e) = 0, \text{ ow} \]

While there is a node (other than \(t \)) with positive excess:
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w)\) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 \[\text{Push}(v, w) \]
Else
 \[\text{Relabel}(v) \]

\textbf{Push}(v, w):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\[q = \min(\text{excess}(v), c_f(v, w)) \]
Add \(q \) to \(f(v, w) \)

\textbf{Relabel}(v):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

\begin{itemize}
 \item \(G_f \) (before)
 \item \(f, h \)
 \item \(G_f \)
\end{itemize}
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w)\) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 \(\text{Push}(v, w) \)
 Else
 \(\text{Relabel}(v) \)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\[q = \min(\text{excess}(v), c_f(v, w)) \]
Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w)\) in \(E_f \), \(h(w) >= h(v) \)
Increase \(h(v) \) by 1

\(G_f \) (before)

\(s \)
\(| \)
\(b \)
\(| \)
\(t \)

\(f, h \)

\(s \)
\(| \)
\(b \)
\(| \)
\(t \)

\(G_f \)

\(s \)
\(| \)
\(b \)
\(| \)
\(t \)
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
- Pick a node \(v \) with \(\text{excess}(v) > 0 \)
- If there is an edge \((v, w)\) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 - \(\text{Push}(v, w) \)
- Else
 - \(\text{Relabel}(v) \)

Push(\(v, w \)):
Applies if \(\text{excess}(v) > 0 \), \(h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v,w)) \)
Add \(q \) to \(f(v, w) \)

Relabel(\(v \)):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

G_f (before)

f, h

G_f
Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 \(\text{Push}(v, w) \)
Else
 \(\text{Relabel}(v) \)

Pre-Flow Push: An Example

\(\text{Push}(v, w): \)
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v, w)) \)
Add \(q \) to \(f(v, w) \)

Relabel(v):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1
Pre-Flow Push: An Example

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
- Pick a node \(v \) with \(\text{excess}(v) > 0 \)
- If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 - \(\text{Push}(v, w) \)
- Else
 - \(\text{Relabel}(v) \)

\[\text{Push}(v, w): \]
- Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v, w)) \)
- Add \(q \) to \(f(v, w) \)

\[\text{Relabel}(v): \]
- Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1

\(G_f \) (before)

\[f, h \]

\[G_f \]
Pre-Flow Push: An Example

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v

Start with preflow f: $f(e) = c(e)$ for $e = (s, v)$, $f(e) = 0$, ow

While there is a node (other than t) with positive excess
Pick a node v with $\text{excess}(v) > 0$
If there is an edge (v, w) in E_f s. t. $\text{push}(v, w)$ applies
Push(v, w)
Else
Relabel(v)

G_f (before)

Push(v, w):
Applies if $\text{excess}(v) > 0, h(w) < h(v)$
$q = \min(\text{excess}(v), c_f(v,w))$
Add q to $f(v, w)$

Relabel(v):
Applies if $\text{excess}(v) > 0$ and for all w s.t (v, w) in E_f, $h(w) \geq h(v)$
Increase $h(v)$ by 1

Labels
Excesses
Pre-Flow Push

- Algorithm
- Correctness
- Running Time Analysis
Correctness: Proof Outline

Three Steps:

- Compatibility: Show that the preflow f and the labeling h maintained by the algorithm always obeys a compatibility property.

- If a flow f is compatible with some labeling, then f is a max-flow.

- Preflow-push outputs a flow on termination.
Correctness: Compatible Pre-Flows

Preflow: A function $f: E \rightarrow \mathbb{R}$ is a preflow if:
1. **Capacity Constraints:** $0 \leq f(e) \leq c(e)$
2. Instead of conservation constraints:
 \[
 \sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) \geq 0
 \]

Excess (v) = \[
\sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e)
\]

Preflow f and labeling h are compatible if:
1. $h(s) = n, h(t) = 0$
2. For all edges (v, w) in the residual graph G_f, $h(v) \leq h(w) + 1$
PreFlow Push: Correctness

Invariant: Preflow f and labeling h are always compatible over the Preflow-Push algorithm.

Proof: By induction. Initially, compatible, as G_f has no (s, v) edges.

Suppose f and h are compatible at time t. At time $t+1$:

- **Relabel:** Labels increase only if no downward edges in G_f
- **Push:** Edges in G_f may be reversed. If so, as we push from high to low, a downwards edge will become an upwards edge.

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v

Start with preflow f: $f(e) = c(e)$ for $e = (s, v), f(e) = 0$, otherwise.

While there is a node (other than t) with positive excess:

1. Pick a node v with $\text{excess}(v) > 0$
2. If there is an edge (v, w) in E_f s.t. $\text{push}(v, w)$ applies:
 - \text{Push}(v, w)
3. Else:
 - \text{Relabel}(v)

Preflow f and labeling l are **compatible** if:

1. $h(s) = n, h(t) = 0$
2. For all edges (v, w) in G_f, $h(v) \leq h(w) + 1$

<table>
<thead>
<tr>
<th>f</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>s</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>v</td>
</tr>
<tr>
<td>1</td>
<td>Invalid</td>
</tr>
<tr>
<td>0</td>
<td>w t</td>
</tr>
</tbody>
</table>
Correctness: Proof Outline

Three Steps:

- Compatibility: Show that the preflow f and the labeling h maintained by the algorithm always obeys a *compatibility* property

- If a flow f is compatible with some labeling, then f is a max-flow

- Preflow-push outputs a flow on termination
Properties of Compatible PreFlows

Preflow f and labeling h are compatible if:
1. h(s) = n, h(t) = 0
2. For all edges (v, w) in the residual graph G_f, h(v) <= h(w) + 1

Property 1: If preflow f and labeling h are compatible, then there is no s-t path in G_f

Proof: Suppose there is an s-t path in G_f

Due to compatibility,
- h(v_1) >= h(s) - 1 = n - 1
- h(v_2) >= h(v_1) - 1 >= n - 2
- ...
- h(t) = h(v_k) - 1 >= n - k > 0 (as k < n)

Contradiction!
Properties of Compatible PreFlows

Preflow f and labeling h are compatible if:
1. $h(s) = n$, $h(t) = 0$
2. For all edges (v, w) in the residual graph G_f, $h(v) \leq h(w) + 1$

Property 1: If preflow f and labeling h are compatible, then there is no s-t path in G_f

Property 2: If flow f and labeling h are compatible, then f is a max flow

Proof: From Property 1 and properties of max flow
Correctness: Proof Outline

Three Steps:

- Compatibility: Show that the preflow f and the labeling h maintained by the algorithm always obeys a compatibility property

- If a flow f is compatible with some labeling, then f is a max-flow

- Preflow-push outputs a flow on termination
PreFlow Push: Correctness

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v), f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w)\) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 \(\text{Push}(v, w) \)
 Else
 \(\text{Relabel}(v) \)

Invariant: Preflow \(f \) and labeling \(h \) are always compatible over the Preflow-Push algorithm

Fact: When Preflow-push stops, \(f \) is a flow

Proof: Why does Preflow-push stop?
 - No valid push or relabel operation:
 We can always relabel or push if \(\text{excess}(v) > 0 \) for some \(v \)
 - No node \(v \) with \(\text{excess}(v) > 0 \):
 Then \(f \) is a flow!

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v,w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by 1

Property 1: If preflow \(f \) and labeling \(h \) are compatible, then there is no s-t path in \(G_f \)
Property 2: If flow \(f \) and labeling \(h \) are compatible, then \(f \) is a max flow
PreFlow Push: Correctness

Fact: When Preflow-push stops, f is a flow

From Property 2 of compatible flows, and Invariant, f is a max flow

Thus, Preflow-Push correctly outputs a maxflow

Push(v, w):
- Applies if $\text{excess}(v) > 0$, $h(w) < h(v)$
- $q = \min(\text{excess}(v), c_f(v, w))$
- Add q to $f(v, w)$

Relabel(v):
- Applies if $\text{excess}(v) > 0$ and for all w s.t. (v, w) in E_f, $h(w) \geq h(v)$
- Increase $h(v)$ by 1

Invariant: Preflow f and labeling h are always compatible over the Preflow-Push algorithm

Fact: When Preflow-push stops, f is a flow

From Property 2 of compatible flows, and Invariant, f is a max flow

Thus, Preflow-Push correctly outputs a maxflow

Property 1: If preflow f and labeling h are compatible, then there is no s-t path in G_f

Property 2: If flow f and labeling h are compatible, then f is a max flow

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v

Start with preflow f: $f(e) = c(e)$ for $e = (s, v)$, $f(e) = 0$, otherwise

While there is a node (other than t) with positive excess
- Pick a node v with $\text{excess}(v) > 0$
- If there is an edge (v, w) in E_f s.t. $\text{push}(v, w)$ applies
 - Push(v, w)
- Else
 - Relabel(v)

Preflow f and labeling h are compatible if:
1. $h(s) = n, h(t) = 0$
2. For all edges (v, w) in G_f, $h(v) \leq h(w) + 1$
Correctness: Proof Outline

Three Steps:

- Compatibility: Show that the preflow f and the labeling h maintained by the algorithm always obeys a compatibility property.

- If a flow f is compatible with some labeling, then f is a max-flow.

- Preflow-push outputs a flow on termination.
Pre-Flow Push

• Algorithm
• Correctness
• Running Time Analysis
Running Time Analysis: Outline

1. How many Push Ops? Relabel Ops?

2. How to implement Push and Relabel Ops efficiently?
Running Time Analysis: Outline

1. How many Relabel Ops?

 Main Idea: Bound the maximum value of $h(v)$ for any node v, and bound #relabel ops through this
Preflow Push: #Relabels

Property 1: In a preflow f, if excess(v) > 0, then there is a path from v to s in G_f

Start with labeling: h(s) = n, h(t) = 0, h(v) = 0, for other v
Start with preflow f: f(e) = c(e) for e = (s, v), f(e) = 0, ow

While there is a node (other than t) with positive excess
Pick a node v with excess(v) > 0
If there is an edge (v, w) in E_f s.t. push(v, w) applies
Push(v, w)
Else
Relabel(v)

Push(v, w):
Applies if excess(v) > 0, h(w) < h(v)
q = min(excess(v), c_f(v,w))
Add q to f(v, w)

Relabel(v):
Applies if excess(v) > 0 and for all w s.t (v, w) in E_f, h(w) >= h(v)
Increase h(v) by 1

Now, total excess of nodes in B =
\[\sum_{v \in B} \sum_{e \text{ into } B} f(e) - \sum_{v \in B} \sum_{e \text{ out of } B} f(e) \geq 0 \]

Three types of edges e in the sum:
1. Both endpoints of e are in B: f(e) cancels out
2. e = (u, v), u in A, v in B: f(e) = 0
3. e = (v, u), u in A, v in B

Total excess of nodes in B:
\[- \sum_{v \in B} \sum_{u \in A} f(v, u) \geq 0 \]

As excess(v) is never <0, excess(v)=0 for v in B

Fact: Any e=(x, y) from A to B has f(x,y) = 0
If not, (y, x) is in G_f, so there is a y - s path

A = all nodes v s.t. s is reachable from v in G_f
B = remaining nodes
Preflow Push: #Relabels

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \).

Property 2: At any point, for any \(v \), \(h(v) \leq 2n - 1 \).

Proof: If \(\text{excess}(v) > 0 \), there is a \(v-s \) path in \(G_f \). Let \(v = v_1, ..., v_k = s \) be the path.

By compatibility:

\[
\begin{align*}
\text{h}(s) &= n, \\
\text{h}(v_{k-1}) &\leq n + 1, \\
\text{h}(v_1) &\leq n + k - 1 \\ &\leq 2n - 1
\end{align*}
\]

Push(\(v, w \)): Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)

\[q = \min(\text{excess}(v), c_f(v,w)) \]

Add \(q \) to \(f(v, w) \)

Relabel(\(v \)): Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)

Increase \(h(v) \) by 1

Compatibility of \(f \) and \(h \):

1. \(h(s) = n, h(t) = 0 \)
2. For all edges \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)

If \(\text{excess}(v) = 0 \), then \(h(v) \) has not changed since the last time \(v \) had \(\text{excess} > 0 \)

Thus, \(h(v) \leq 2n - 1 \) also
Preflow Push: #Relabels

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
 Push\((v, w)\)
Else
 Relabel\((v)\)

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

Property 2: At any point in the algorithm, for any \(v \), \(h(v) \leq 2n - 1 \)

Property 3: Any node can be relabeled at most \(2n \) times in the algorithm

Proof: Labels never decrease, start at 0, increase by at least 1 per relabel, and can only go up to \(2n - 1 \)

\[\text{Push}(v, w): \]
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\[q = \min(\text{excess}(v), c_f(v, w)) \]
Add \(q \) to \(f(v, w) \)

\[\text{Relabel}(v): \]
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t. \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1
Preflow Push: #Relabels

Property 1: In a preflow f, if $\text{excess}(v) > 0$, then there is a path from v to s in G_f.

Property 2: At any point in the algorithm, for any v, $h(v) \leq 2n - 1$.

Property 3: Any node can be relabeled at most $2n$ times in the algorithm.

Total #relabel operations $= O(n^2)$

Push(v, w):
Applies if $\text{excess}(v) > 0$, $h(w) < h(v)$
$q = \min(\text{excess}(v), c_f(v, w))$
Add q to $f(v, w)$

Relabel(v):
Applies if $\text{excess}(v) > 0$ and for all w s.t. (v, w) in E_f, $h(w) \geq h(v)$
Increase $h(v)$ by 1

Start with labeling:
- $h(s) = n$,
- $h(t) = 0$,
- $h(v) = 0$, for other v

Start with preflow f: $f(e) = c(e)$ for $e = (s, v)$, $f(e) = 0$, otherwise.

While there is a node (other than t) with positive excess:
Pick a node v with $\text{excess}(v) > 0$
If there is an edge (v, w) in E_f s.t. push(v, w) applies
Push(v, w)
Else
Relabel(v)
Running Time Analysis: Outline

1. How many Push Ops? Relabel Ops?

2. How to implement Push and Relabel Ops efficiently?
Running Time Analysis: Outline

1. How many Relabel Ops? How many Push Ops?

Two types of Push Ops:
- **Saturating Pushes**: (v, w) is saturated after $\text{push}(v, w)$
 - Same edge can’t be pushed on until a relabel (we will see why!)
- **Non-saturating Pushes**: $\text{excess}(v) = 0$ after $\text{push}(v, w)$
Preflow Push: \#Pushes

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0\) for other \(v\)
Start with preflow \(f: f(e) = c(e)\) for \(e = (s, v)\), \(f(e) = 0\) otherwise

While there is a node (other than \(t\)) with positive excess
- Pick a node \(v\) with \(\text{excess}(v) > 0\)
- If there is an edge \((v, w)\) in \(E_f\) s.t. \(\text{push}(v, w)\) applies
 - \(\text{Push}(v, w)\)
- Else
 - \(\text{Relabel}(v)\)

Two kinds of Pushes:
- **Saturating**: \((v, w)\) is not in \(G_f\) after push
- **Nonsaturating**: \(\text{excess}(v)\) becomes 0 after push

Property 1: There are at most \(2mn\) saturating pushes

Proof: For a fixed edge \((v, w)\), after a saturating push, we can only push along \((v, w)\) again once \(v\) is relabeled
- \#relabels of \(v\) \(\leq 2n\)
- \#saturating pushes along \((v, w)\) \(\leq 2n\)
- \#saturating pushes along all \(m\) edges \(\leq 2nm\)

Push \((v, w)\):
- Applies if \(\text{excess}(v) > 0\), \(h(w) < h(v)\)
 - \(q = \min(\text{excess}(v), c_f(v, w))\)
 - Add \(q\) to \(f(v, w)\)

Relabel \((v)\):
- Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)
 - Increase \(h(v)\) by 1

\((v, w)\) disappears from \(G_f\) after saturating push, appears only after \(w\) to \(v\) push
Running Time Analysis: Outline

1. How many Relabel Ops? How many Push Ops?

Two types of Push Ops:

Saturating Pushes: \((v, w)\) is saturated after \(\text{push}(v, w)\)

 Same edge can’t be pushed on until a relabel

Non-saturating Pushes: \(\text{excess}(v) = 0\) after \(\text{push}(v, w)\)

 Harder to bound. Need to use a potential function argument
Preflow Push: #Pushes

Two kinds of Pushes:

Saturating: \((v,w)\) is not in \(G_f\) after push
Nonsaturating: \(\text{excess}(v)\) becomes 0 after push

Property 0: There are \(\leq 2n^2\) relabels
Property 1: There are \(\leq 2mn\) saturating pushes
Property 2: There are \(\leq 4mn^2\) non-saturating pushes

Proof: Define a potential function \(G(f, h)\):
\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]

Initially, \(G(f, h) = 0\)
At any time, \(G(f, h) \geq 0\)
At a relabel operation, \(G(f, h)\) can increase by 1
At a saturating push operation, \(G(f, h)\) can increase if \(w\) gets >0 excess. Total increase = \(h(w) \leq 2n - 1\)
At a non-saturating push operation, \(G(f, h)\) will decrease by \(h(v)\), but may increase by \(h(w)\) if \(w\) gets >0 excess
But \(h(v) > h(w)\), so \(G(f, h)\) will decrease by at least 1

\[
\text{Total increase from relabels} \leq 2n^2
\]
\[
\text{Total increase from saturating pushes} \leq 2mn(2n - 1)
\]
\[
(\#\text{non-saturating pushes}) \times 1 \\
\leq \text{Total decrease from such pushes} \\
\leq \text{total increase from anything else} \\
\leq 2n^2 + 2mn(2n - 1) = 4mn^2
\]

\#Non-saturating Pushes \(\leq 4mn^2\)
Two kinds of Pushes:

- **Saturating**: \((v,w)\) is not in \(G_f\) after push
- **Nonsaturating**: \(\text{excess}(v)\) becomes 0 after push

Property 0: There are at most \(2n^2\) relabels

Property 1: There are at most \(2mn\) saturating pushes

Property 2: There are at most \(4mn^2\) non-saturating pushes

Total #pushes: \(O(mn^2)\)
Running Time Analysis: Outline

1. How many Push Ops? Relabel Ops?

2. How to implement Push and Relabel Ops efficiently?
Preflow Push: Data Structures

1. For each label, use a list to maintain nodes with excess > 0
 Time to select a v with excess(v) > 0: O(1)
 Time to insert or delete: O(1)

2. For each v, maintain all (v,w) in E_f in an adjacency list
 Keep a pointer P(v) to the next edge we can push on
 If excess(v) = 0, P(v) stays on the current edge
 Move P(v) by 1 when current edge is saturated
 [Recall: If we push(v,w) and saturate it, then, we cannot push(v,w) again until v is relabeled]
 Update P(v) and the list when v is relabeled

While there is a node (other than t) with positive excess
 Pick a node v with excess(v) > 0
 If there is an edge (v, w) in E_f s. t. push(v, w) applies
 Push(v, w)
 Else
 Relabel(v)

Start with labeling: h(s) = n, h(t) = 0, h(v) = 0, for other v
Start with preflow f: f(e) = c(e) for e = (s, v), f(e) = 0, ow

Push(v, w):
Applies if excess(v) > 0, h(w) < h(v)
q = min(excess(v), c_f(v,w))
Add q to f(v, w)

Relabel(v):
Applies if excess(v) > 0 and for all w s.t (v, w) in E_f, h(w) >= h(v)
Increase h(v) by 1
Preflow Push: Data Structures

Start with labeling:
\[h(s) = n, h(t) = 0, h(v) = 0 \text{ for other } v \]
Start with preflow:
\[f(e) = c(e) \text{ for } e = (s, v), f(e) = 0 \text{, otherwise} \]

While there is a node (other than \(t \)) with positive excess:
1. Pick a node \(v \) with \(\text{excess}(v) > 0 \)
2. If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 - \(\text{Push}(v, w) \)
3. Else
 - \(\text{Relabel}(v) \)

\(\text{Relabel}(v) \):
- Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t. \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1

\(\text{Push}(v, w) \):
- Applies if \(\text{excess}(v) > 0 \), \(h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v, w)) \)
- Add \(q \) to \(f(v, w) \)

1. For each label, use a list to maintain nodes with \(\text{excess} > 0 \)
 - Time to select a \(v \) with \(\text{excess}(v) > 0 \): \(O(1) \)
 - Time to insert or delete: \(O(1) \)

2. For each \(v \), maintain all \((v, w) \) in \(E_f \) in an adjacency list
 - Keep a pointer \(P(v) \) to the next edge we can push on
 - If \(\text{excess}(v) = 0 \), \(P(v) \) stays on the current edge
 - Move \(P(v) \) by 1 when current edge is saturated
 - [Recall: If we push \((v, w) \) and saturate it, then, we cannot push \((v, w) \) again until \(v \) is relabeled]
 - Update \(P(v) \) and the list when \(v \) is relabeled

\[\text{Total running time} = O(m) \times \#\text{relabels}/\text{node} + \]
\[O(\#\text{pushes} + \#\text{relabels}) \]
\[= O(mn) + O(mn^2) = O(mn^2) \]

Time per relabel = \(O(1) \)
Time per push = \(O(1) \)
Time to maintain list after relabeling \(v = O(\deg(v)) \)
Running Time Analysis: Outline

1. How many Push Ops? Relabel Ops?
 \#pushes = O(mn^2), \#relabels = O(n^2)

2. How to implement Push and Relabel Ops efficiently?
 Data structure which takes: O(1) per push, O(deg(v)) to relabel v once
 Total running time = O(mn^2)