Today's learning goals

• Evaluate which proof technique(s) is appropriate for a given proposition
 • Direct proof
 • Proofs by contraposition
 • Proofs by contradiction
 • Proof by cases
 • Constructive existence proofs
• Correctly prove statements using appropriate style conventions, guiding text, notation, and terminology
• Define and differentiate between important sets
• Use correct notation when describing sets: {...}, intervals
• Define and prove properties of: subset relation, power set, Cartesian products of sets, union of sets, intersection of sets, disjoint sets, set differences, complement of a set
Overall proof strategy

• Do you believe the statement?
 • Try some small examples.
• Determine logical structure + main connective.
• Determine relevant definitions.
• Map out possible proof strategies.
 • For each strategy: what can we assume, what is the goal?
 • Start with simplest, move to more complicated if/when get stuck.
To prove that "If P, then Q"
- Assume P is true.
- Use rules of inference, axioms, definitions to…
- … conclude Q is true.
Main connective: conditional

- Modus tollens

Proof by contraposition

To prove that "If P, then Q"

- Assume Q is false.
- Use rules of inference, axioms, definitions to…
- … conclude P is also false.

Both modus ponens and modus tollens apply when proving a conditional statement
Universal conditionals

\[\forall n \ (\ldots \rightarrow \ldots) \]

To prove this statement is false:
Find a \textit{counterexample}.

To prove this statement is true:
Select a \textit{general element} of the domain, use rules of inference (e.g. direct proof, proof by contrapositive, etc.) to prove that the conditional statement is true of this element, \(c \) conclude that it holds of all members of the domain.
Reminder: evens and odds

An integer \(a \) is even if there is some integer \(b \) such that

\[a = 2b \]

Which of the following is equivalent to definition of \(a \) being even?

A. \(a/2 \)
B. \(a \) \(\text{div} \) 2 is an integer.
C. \(a \) \(\text{mod} \) 2 is zero.
D. \(2a \) is an integer.
E. More than one of the above.
Reminder: evens and odds

An integer a is **even** if there is some integer b such that

$$a = 2b.$$

An integer a is **odd** iff

- it's not even
- there is some integer b such that
 $$a = 2b + 1.$$

Why equivalent?
Flexing proof muscles

Theorem: If n is even, then so is n^2.

Proof:
Flexing proof muscles

Theorem: If n is even, then so is n^2.

Proof:
Let n be an arbitrary integer. Assume, towards a direct proof, that n is even. WTS that n^2 is also even. By definition of n being even, there is some integer c such that $n = 2c$. Squaring both sides, $n^2 = 4c^2$. Since c is an integer and integers are closed under multiplication, $2c^2$ is also an integer. Therefore, $x=2c^2$ serves as an example to prove the existential statement $\exists x (n^2 = 2x)$ which is the definition of n^2 being even, so the proof is complete.
Flexing proof muscles

Theorem: If n is odd, then so is n^2.

Proof:
Flexing proof muscles

Theorem: If n is odd, then so is n^2.

Proof:
Let n be an arbitrary integer. Assume, towards a direct proof, that n is odd. WTS that n^2 is also odd. By definition of n being odd, there is some integer c such that $n = 2c+1$. Squaring both sides, $n^2 = 4c^2+4c+1$. Since c is an integer and integers are closed under addition and multiplication, $2c^2+2c$ is also an integer. Since $n^2 = 2(2c^2+2c)+1$, $x = 2c^2+2c$ serves as an example to prove the existential statement which is the definition of n^2 being odd, so the proof is complete.
Flexing proof muscles

Theorem: If n^2 is even, then so is n.

Proof:
Flexing proof muscles

Theorem: If n^2 is even, then so is n.

Proof:

Let n be an arbitrary integer. Assume, towards a proof by contraposition, that that n is not even. WTS that n^2 is also not even. By definition of n, n is odd (since it's not even). Applying our previous theorem, we conclude that n^2 is also odd. By definition of odd, this means that n^2 is not even, as required.
Flexing proof muscles

Theorem: If n^2 is odd, then so is n.

Proof:
Flexing proof muscles

Theorem: If n^2 is odd, then so is n.

Proof:
Let n be an arbitrary integer. Assume, towards a proof by contraposition, that that n is not odd. WTS that n^2 is also not odd. By definition of n, n is even (since it's not odd). Applying our previous theorem, we conclude that n^2 is also even. By definition of odd, this means that n^2 is not odd, as required.
Reminder: perfect squares

Theorem: For integers $k>1$, then 2^k-1 is not a perfect square.

Proof: ???
Proof by contradiction

Idea: To prove P, instead, we prove that the conditional $(\neg P) \rightarrow F$ is true. But, the only way for a conditional to be true if its conclusion is false is for its hypothesis to be false too.

Conclude: $(\neg P)$ is false, i.e. P is true!
Back to: perfect squares

Theorem: For integers $k > 1$, then $2^k - 1$ is not a perfect square.

Proof:

What would we assume in a proof by contradiction?

A. $k > 1$
B. $k \leq 1$
C. $2^k - 1$ is not a perfect square
D. $2^k - 1$ is a perfect square
E. More than one of the above
Theorem: For integers $k>1$, then 2^k-1 is not a perfect square.

Proof: Let k be an integer. Assume that

1. $k > 1$ and that
2. 2^k-1 is a perfect square.

Goal: look for a contradiction that is now guaranteed.

Keep going ...
Overall proof strategy

- Do you believe the statement?
 - Try some small examples.
- Determine logical structure + main connective.
- Determine relevant definitions.
- Map out possible proof strategies.
 - Conditional statement? Direct OR contrapositive.
 - Existential statement? Find an example.
 - Universal statement? Start with generic element …
 - Any statement: contradiction
 - For each strategy: what can we assume, what is the goal?
 - Start with simplest, move to more complicated if/when get stuck.
Some definitions

Set: unordered collection of elements

"x is an element of set A"
\[x \in A \]

"x is not an element of set A"
\[x \notin A \]
Some definitions

Set: unordered collection of elements

A = B iff \(\forall x(x \in A \iff x \in B) \)

How to specify these elements?
- Roster \{ ... \}
- Set builder \(\{ x \in U \mid P(x) \} \)
Set: unordered collection of elements

$A = B \iff \forall x (x \in A \iff x \in B)$

Which of the following is not equal to the rest?

A. \{1, 2, 3\}
B. \{\{1\}, \{2\}, \{3\}\}
C. \{3, 1, 2\}
D. \{1, 1, 2, 3\}
E. \{x \in \mathbb{Z} \mid (x^2 - 4x + 3) = 0 \text{ or } x \text{ is an even prime}\}
Some definitions

Set: unordered *collection* of elements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>natural numbers</td>
<td>{0, 1, 2, 3, \ldots}</td>
</tr>
<tr>
<td>Z</td>
<td>integers</td>
<td>{\ldots, -2, -1, 0, 1, 2, \ldots}</td>
</tr>
<tr>
<td>Z^+</td>
<td>positive integers</td>
<td>{1, 2, 3, \ldots}</td>
</tr>
<tr>
<td>Q</td>
<td>rational numbers</td>
<td>{p/q</td>
</tr>
<tr>
<td>R</td>
<td>real numbers</td>
<td></td>
</tr>
<tr>
<td>R^+</td>
<td>positive real numbers</td>
<td></td>
</tr>
</tbody>
</table>

Rosen Sections 2.1, 2.2

Arrows in set builder notation indicate "and"
Some definitions

Subset: \(A \subseteq B \) means \(\forall x (x \in A \rightarrow x \in B) \)
Some definitions

Subset: \(A \subseteq B \) means \(\forall x (x \in A \rightarrow x \in B) \)

Theorem: For any sets A and B, \(A = B \) if and only if both \(A \subseteq B \) and \(B \subseteq A \)

Proof:

What's the logical structure of this statement?
A. Universal conditional.
B. Biconditional.
C. Conjunction (and)
D. None of the above.
Some definitions

Subset: \(A \subseteq B \) means \(\forall x (x \in A \rightarrow x \in B) \)

Theorem: For any sets A and B, A = B if and only if both \(A \subseteq B \) and \(B \subseteq A \)

Proof: Let A and B be any sets.

- **WTS** if A=B, then both \(A \subseteq B \) and \(B \subseteq A \).
- **WTS** if both \(A \subseteq B \) and \(B \subseteq A \), then A=B.

Keep going …
Some definitions

Subset: $A \subseteq B$ means $\forall x (x \in A \rightarrow x \in B)$

How would you prove that \mathbb{R} is not a subset of \mathbb{Q}?
A. Prove that every real number is not rational.
B. Prove that every rational number is real.
C. Prove that there is a real number that is rational.
D. Prove that there is a real number that is not rational.
E. Prove that there is a rational number that is not real.
An (ir)rational excursion

Theorem: \mathbb{R} is not a subset of \mathbb{Q}.

Lemma: $\sqrt{2}$ is not rational.

Corollary: There are irrational numbers x,y such that x^y is rational.
An (ir)rational excursion

Theorem: R is not a subset of Q.

Lemma: $\sqrt{2}$ is not rational.

Recall: $Q = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } q \neq 0\}$

Details of proof in page 86: use contradiction!

Corollary: There are irrational numbers x, y such that x^y is rational.

Existential statement: can we build a witness?
An (ir)rational excursion

Theorem: \(\mathbb{R} \) is not a subset of \(\mathbb{Q} \).

Lemma: \(\sqrt{2} \) is not rational.

Corollary: There are irrational numbers \(x, y \) such that \(x^y \) is rational.
Some definitions

Empty set: \(\emptyset = \{ \} = \{ x : x \neq x \} \)

Which of the following is not equal to the rest?

A. \(\{ \} \)
B. \(\{ \emptyset \} \)
C. \(\emptyset \)
D. \(\{ x \in \mathbb{Z} \mid x > x^2 \} \)
E. \(\{ x \mid x \in \emptyset \} \)
Some definitions

Power set: For a set S, its powerset is the set of all subsets of S.

$$\mathcal{P}(S) = \{ A \mid A \subseteq S \}$$

Which of the following is **not** true (in general)?

A. $S \in \mathcal{P}(S)$
B. $\emptyset \in \mathcal{P}(S)$
C. $S \subseteq \mathcal{P}(S)$
D. $\emptyset \subseteq \mathcal{P}(S)$
E. $\emptyset \in S$