Today's learning goals

• Define and compute the cardinality of a set: Finite sets, countable sets, uncountable sets
• Use functions to compare the sizes of sets
• Determine and prove whether a given binary relation is
 • symmetric
 • antisymmetric
 • reflexive
 • transitive
• Represent equivalence relations as partitions and vice versa
• Define and use the congruence modulo m equivalence relation
Cardinality

- Finite sets
 - $|A| = n$ for some nonnegative int n

- Countably infinite sets
 - $|A| = |\mathbb{Z}^+|$ (informally, can be listed out)

- Uncountable sets
 - Infinite but not in bijection with \mathbb{Z}^+
Cardinality

• Countable sets A is finite or $|A| = |\mathbb{Z}^+|$ (informally, can be listed out)

Examples:

- the set of **odd positive** integers
- the set of **all integers**
- the set of **positive rationals**
- the set of **negative rationals**
- the set of **all rationals**
- the set of **binary strings**
\[\mathbb{Z}^+ \not\subseteq \mathbb{R} \]

Rosen example 5, page 173-174

Cantor's diagonalization argument

Theorem: For every set \(A \), \(|A| \neq |\mathcal{P}(A)| \)
|\mathbb{Z^+}| \neq |\mathbb{R}| \\

Cantor's diagonalization argument

Theorem: For every set \(A \), \(|A| \neq |\mathcal{P}(A)|\)

Proof: (Proof by contradiction)

Assume towards a contradiction that \(|A| = |\mathcal{P}(A)|\). By definition, that means there is a **bijection** \(A \to \mathcal{P}(A) \).
\(|\mathbb{Z^+}| \neq |\mathbb{R}|\)

Cantor's diagonalization argument

Consider the subset \(D\) of \(A\) defined by, for each \(a\) in \(A\):

\[a \in D \iff a \notin f(a)\]
$|\mathbb{Z}^+| \neq |\mathbb{R}|$

Cantor's diagonalization argument

Consider the subset D of A defined by, for each a in A:

$$a \in D \iff a \notin f(a)$$

Define d to be the pre-image of D in A under f

$f(d) = D$

Is d in D?

- If yes, then by definition of D, $d \notin f(d) = D$ \hspace{1cm} a contradiction!
- Else, by definition of D, $\neg (d \notin f(d))$ so $d \in f(D) = D$ \hspace{1cm} a contradiction!
Cardinality

- Uncountable sets

Examples: the power set of any countably infinite set and also ...
- the set of real numbers
- (0,1)
- (0,1]

Infinite but not in bijection with \mathbb{Z}^+

Example 5
Example 6 (++)

Exercises 33, 34
Cardinality and subsets

Suppose A and B are sets and $A \subseteq B$.

A. If A is finite then B is finite.
B. If A is countable then B is uncountable.
C. If B is infinite then A is finite.
D. If B is uncountable then A is uncountable.
E. None of the above.
Size as a relation

- Cardinality lets us compare and group sets.

A is related to B iff $|A| = |B|$
Size as a relation

- Cardinality lets us compare and group sets.

\[U = \mathcal{P}\{1,2,3,4\} \]

A is related to B iff \(|A| = |B|\)
Relations, more generally

- Let A, B be sets. **Binary relation from A to B** is (any) subset of $A \times B$.

Examples

- $A = B = \mathbb{Z}$
 - $R = \{(x,y) : x < y\}$

- $A = \{0,1\}^* \quad B = \mathbb{N}$
 - $R = \{(w, n) : |w|=n\}$

- $A = \{0,1,2\} \quad B = \{a,b\}$
 - $R = \{(0,a), (1,a), (1,b)\}$

[Rosen Sections 9.1, 9.3 (second half), 9.5, 9.6]
Relation on a set A

R is subset of $A \times A$. It is called

reflexive iff $\forall a \ (a, a) \in R$

symmetric iff $\forall a \forall b \ (a, b) \in R \rightarrow (b, a) \in R$

antisymmetric iff $\forall a \forall b \ ([(a, b) \in R \land (b, a) \in R] \rightarrow a = b)$

transitive iff $\forall a \forall b \forall c \ ([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R)$
New representation of relations on a set A

$$A = \mathcal{P} \{1, 2\}$$

$X \mathcal{R} Y$ iff $X \subseteq Y$
Relation on a set A

R is subset of A x A. It is called

reflexive iff \(\forall a \ ((a, a) \in R) \) \quad \text{self loops}

symmetric iff \(\forall a \forall b \ ((a, b) \in R \rightarrow (b, a) \in R) \) \quad \text{paired arrows}

antisymmetric iff \(\forall a \forall b \ ([(a, b) \in R \land (b, a) \in R] \rightarrow a = b) \)

transitive iff \(\forall a \forall b \forall c \ ([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R) \) \quad \text{chains collapse}
Relation on a set A, more generally

Example $A = \mathcal{P} \{1, 2\}$

$X \, R \, Y \iff X \subseteq Y$

Which of the following properties hold for R?

A. Reflexive, i.e. $\forall a \ (a, a) \in R$

B. Symmetric, i.e. $\forall a \forall b \ (a, b) \in R \rightarrow (b, a) \in R$

C. Antisymmetric, i.e.

$\forall a \forall b \ [(a, b) \in R \land (b, a) \in R] \rightarrow a = b$

D. Transitive, i.e.

$\forall a \forall b \forall c \ [(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R$

E. None of the above.
Relation on a set A, more generally

Example $\mathbb{Z} \quad R=\{(x, y) : x < y\}$

Which of the following properties hold for R?

A. Reflexive, i.e. $\forall a \left((a, a) \in R \right)$
B. Symmetric, i.e. $\forall a \forall b \left((a, b) \in R \rightarrow (b, a) \in R \right)$
C. Antisymmetric, i.e. $\forall a \forall b \left([(a, b) \in R \land (b, a) \in R] \rightarrow a = b \right)$
D. Transitive, i.e. $\forall a \forall b \forall c \left([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R \right)$
E. None of the above.
Equivalence relations

- Group together "similar" objects

Rosen p. 608
Equivalence relations

Two formulations

A relation R on set S is an equivalence relation if it is reflexive, symmetric, and transitive.

$x \sim y$ iff x and y are "similar"

Partition S into equivalence classes, each of which consists of "similar" elements: collection of disjoint, nonempty subsets that have S as their union

x, y both in A_i iff x and y are "similar"
Equivalence relations on strings

Which of the following binary relations on $\mathcal{P}\{1, 2\}$ are equivalence relations?

A. $A R_1 B$ iff $A \subseteq B$
B. $A R_2 B$ iff $|A| = |B|$
C. $A R_3 B$ iff A and B are disjoint
D. More than one of the above
E. None of the above

How to prove?
Equivalence relations on strings

Which of the following binary relations on \(\{0,1\}^*\) are equivalence relations?

A. \(u R_1 v\) iff \(|u| = |v|\)
B. \(u R_2 v\) iff the first bit of \(u\) is not equal to the first bit of \(v\)
C. \(u R_3 v\) iff \(u\) is the reverse of \(v\)
D. More than one of the above
E. None of the above

How to prove?
For a,b in \mathbb{Z} and m in \mathbb{Z}^+ we say a is congruent to b mod m iff

$$m \mid (a-b)$$

i.e.

$$\exists q (a - b = qm)$$

and in this case, we write

$$a \equiv b \pmod{m}$$

Which of the following is true?

A. $5 \equiv 10 \pmod{3}$
B. $5 \equiv 1 \pmod{3}$
C. $5 \equiv 3 \pmod{3}$
D. $5 \equiv -1 \pmod{3}$
E. None of the above.
Claim: Congruence mod m is an equivalence relation

Proof:

Reflexive?
Symmetric?
Transitive?

What partition of the integers is associated with this equivalence relation?
Next up

- Modular arithmetic