CSE182-L6

P-value computation
Dictionary matching
P-value

- **P-value(11):** probability that a specific value (11) or something more extreme is achieved by chance.
- **E-value(11):** The number of times we expect to see a specific value or something more extreme just by chance.
- **E.g.**, look at alignment scores obtained by chance
 - 1, 2, 8, 3, 5, 3, 6, 12, 4, 4, 1, 5, 3, 6, 7, 15
- **Compute a Distribution**
 - 1–2 xxx
 - 3–4 xxxx
 - 5–6 xxxx
 - 7–8 xx
 - 9–10
 - 11–12 x
 - 12–13
 - 14–15 x
- **P-value (11) = 2/15**
Distribution

• Given a collection of numbers (scores)
 – 1, 2, 8, 3, 5, 3, 6, 4, 4, 1, 5, 3, 6, 7,....

• Plot its distribution as follows:
 – X-axis = each number
 – Y-axis (count/frequency/probability) of
 seeing that number
 – More generally, the x-axis can be a range
 to accommodate real numbers
P-value computation

• Goal: Compute P-value(x)

• A simple empirical method:
 • Compute a distribution of scores against a random database.
 • Use an estimate of the area under the curve to get the probability.
 • OR, fit the distribution to one of the standard distributions.
Z-scores for alignment

• Initial assumption was that the scores followed a normal distribution.

• Z-score computation:
 – For any alignment, score S, shuffle one of the sequences many times, and recompute alignment. Get mean and standard deviation

\[Z_s = \frac{S - \mu}{\sigma} \]

• Look up the Z-score in a table to get a P-value

\[f(Z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \]
Blast E-value

• Initial (and natural) assumption was that scores followed a Normal distribution
• 1990, Karlin and Altschul showed that ungapped local alignment scores follow an exponential distribution
• Practical consequence:
 – Longer tail.
 – Previously significant hits now not so significant
Altschul Karlin statistics

- For simplicity, assume that the database is a binary string, and so is the query.
 - Let match-score=1,
 - mismatch score=-∞,
 - indel=-∞ (No gaps allowed)

- What does it mean to get a score k?
Large database search

Database (n)

Query (m)

Database size $n=100M$, Query size $m=1000$.

$O(nm) = 10^{11}$ computations
Observations

• For a typical query, there are only a few ‘real hits’ in the database.
• Much of the database is random from the query’s perspective
• Consider a random DNA string of length n.
 – $P_r[A]=P_r[C]=P_r[G]=P_r[T]=0.25$
• Assume for the moment that the query is all A’s (length m).
• What is the probability that an exact match to the query can be found? (P-value)
• What is the expected number of hits (E-value)
Basic probability

- Probability that there is a match starting at a fixed position $i = 0.25^m$
- What is the probability that some position i has a match.
- Dependencies confound probability estimates.
Basic Probability: Expectation

• Q: Toss a coin many times: If it is HEADS, and the previous time was HEADS too, you get a dollar.
• What is the money you expect to get after n tosses?
 – Let X_i be the amount earned in the i-th toss

\[E(X_i) = 1 \cdot p + (0) \cdot (1 - p) = p \]

• Total money you expect to earn

\[E\left(\sum_i X_i \right) = \sum_i E(X_i) = np \]
Expected number of matches

- Expected number of matches can still be computed.

 \[\text{Pr(Match at Position } i \text{)} = p_i = 0.25^m \]
 \[E(X_i) = p_i = 0.25^m \]

- Let \(X_i = 1 \) if there is a match starting at position \(i \), \(X_i = 0 \) otherwise.

 \[E(\sum_i X_i) = \sum_i E(X_i) = n \left(\frac{1}{4} \right)^m \]
Expected number of exact Matches is small!

- Expected number of matches = $n \times 0.25^m$
 - If $n=10^7$, $m=10$,
 - Then, expected number of matches = 9.537
 - If $n=10^7$, $m=11$
 - expected number of hits = 2.38
 - $n=10^7$, $m=12$,
 - Expected number of hits = 0.5 < 1
- Bottom Line: An exact match to a substring of the query is unlikely just by chance.
Exponential distribution

- Random Database, Pr(1) = p
- What is the expected number of hits to a sequence of k 1’s

\[(n - k)p^k \approx ne^{k \ln p} = ne^{-k \ln \left(\frac{1}{p}\right)}\]

- Instead, consider a random binary Matrix. Expected # of diagonals of k 1s

\[\Lambda = (n - k)(m - k)p^k \approx nme^{k \ln p} = nme^{-k \ln \left(\frac{1}{p}\right)}\]
E-values for a simple score function

- If match-score=1, and all penalties are $-\infty$, then
- E-value =

$$\Lambda = (n - k)(m - k) p^k \approx nme^{k \ln p} = nme^{-k \ln \left(\frac{1}{p}\right)}$$

- E-value increases linearly with size of database
- E-value decreases exponentially with increasing scores
- What about P-value(k): Probability that there is at least one hit with score k?
• As you increase k, the number decreases exponentially.
• The number of diagonals of k runs can be approximated by a Poisson process

\[\Pr[u] = \frac{e^{-\Lambda} \Lambda^u}{u!} \]

\[\Pr[u > 0] = 1 - e^{-\Lambda} \]

• In ungapped alignments, we replace the coin tosses by column scores, but the behaviour does not change (Karlin & Altschul).
• As the score increases, the number of alignments that achieve the score decreases exponentially
E-values and P-values with more complex score functions

• How do we compute P-values and E-values with more complex score functions?
• Karlin and Altschul demonstrated that the similar functions (as in the simple case) apply.
Blast E-value

- Choose a score such that the expected score between a pair of residues < 0
- Expected number of alignments with a score S

\[
E = Kmne^{-\lambda S} = mn2^{-\left(\frac{\lambda S - \ln K}{\ln 2}\right)}
\]

\[
\Pr(S \geq x) = 1 - e^{-Kmne^{-\lambda x}}
\]

- The parameters K, λ are computed empirically
- For small values, E-value and P-value are the same
WHY IS BLAST FAST?
True or False

• There are at least two people in NYC with the same amount (number) of hair.
• What if we exclude bald people?
• What is the pigeonhole principle?
Observation 2

• Suppose we are looking for a database string with greater than 90% identity to the query (length 100)
 • Partition the query into size 10 substrings. At least one much match the database string exactly
Why is this important?

• Suppose we are looking for sequences that are 80% identical to the query sequence of length 100.
• Assume that the mismatches are randomly distributed.
• What is the probability that there is no stretch of 10 bp, where the query and the subject match exactly?

\[\left(1 - \left(\frac{8}{10} \right)^{10} \right)^{90} = 0.000036 \]

• Rough calculations show that it is very low. Exact match of a short query substring to a truly similar subject is very high.
 – The above equation does not take dependencies into account
 – Reality is better because the matches are not randomly distributed
Just the Facts

• Consider the set of all substrings of the query string of fixed length W.
 – Prob. of exact match to a random database string is very low.
 – Prob. of exact match to a true homolog is very high.
 – Keyword Search (exact matches) is MUCH faster than sequence alignment
Speeding up via an exact match heuristics

• Consider a query string of length m
• A db string of length n
• Start by looking for exact matches of keywords of length W between the query and database string.
 - Wherever, there is an exact match, perform a SW local alignment.
Why is BLAST fast?

- Assume that keyword searching does not consume any time and that alignment computation the expensive step.
- Query m=1000, random Db n=10^7, no TP
- SW = O(nm) = 1000*10^7 = 10^{10} computations
- BLAST, W=11
 - E(#11-mer hits) = 1000* (1/4)^11 * 10^7 = 2384
 - Number of computations = 2384*100*100 = 2.384*10^7
 - Ratio = 10^{10}/(2.384*10^7) = 420
- Further speed improvements are possible
Keyword (Dictionary) Matching

• How fast can we match keywords?
• Hash table/Db index? What is the size of the hash table, for m=11
• Suffix trees? What is the size of the suffix trees?
• Trie based search. We will do this in class.
The last step in Blast

• We have discussed
 – Alignments
 – Db filtering using keywords
 – Scoring matrices
 – E-values and P-values

• The last step: Database filtering requires us to scan a large sequence fast for matching keywords
Dictionary Matching

- Q: Given k words (s_i has length l_i), and a database of size n, find all matches to these words in the database string.
- How fast can this be done?
Dict. Matching & string matching

• How fast can you do it, if you only had one word of length m?
 – Trivial algorithm $O(nm)$ time
 – Pre-processing $O(m)$, Search $O(n)$ time.
• Dictionary matching
 – Trivial algorithm $(l_1+l_2+l_3...)n$
 – Using a keyword tree, $l_p n$ (l_p is the length of the longest pattern)
 – Aho-Corasick: $O(n)$ after preprocessing $O(l_1+l_2..)$
• We will consider the most general case
Direct Algorithm

Observations:
• When we mismatch, we (should) know something about where the next match will be.
• When there is a mismatch, we (should) know something about other patterns in the dictionary as well.
The Trie Automaton

- Construct an automaton A from the dictionary
 - $A[v,x]$ describes the transition from node v to a node w upon reading x.
 - $A[u,'T'] = v$, and $A[u,'S'] = w$
 - Special root node r
 - Some nodes are terminal, and labeled with the index of the dictionary word.
An $O(l_p n)$ algorithm for keyword matching

\begin{align*}
l &= 1 \\
c &= 1 \\
v &= \text{root} \\
\text{repeat} \\
&\quad \text{if } ((w = A(v, T[c])) \neq \phi) \\
&\quad \quad v = w \\
&\quad \quad c = c + 1 \\
&\quad \quad \text{if } (v \text{ has label } i) \\
&\quad \quad \quad \text{print “Pattern } i \text{ matches starting at position } l” \\
&\quad \quad \text{else} \\
&\quad \quad \quad c = l + 1 \\
&\quad \quad \quad l = c \\
&\quad \quad \quad v = \text{root} \\
&\quad \text{end} \\
&\text{until } (c > n) /* n \text{ is the database size} */
\end{align*}

- Start with the first position in the db, and the root node.
- If successful transition
 - Increment current pointer
 - Move to a new node
 - If terminal node “success”
- Else
 - Retract ‘current’ pointer
 - Increment ‘start’ pointer
 - Move to root & repeat
Illustration:

\[
\begin{align*}
&l = 1 \\
&c = 1 \\
&v = \text{root} \\
\text{repeat} & \\
&\quad \text{if } (((w = A(v, T[c])) \neq \phi)) \\
&\quad \quad v = w \\
&\quad \quad c = c + 1 \\
&\quad \quad \text{if } (v \text{ has label } i) \\
&\quad \quad \quad \text{print “Pattern } i \text{ matches starting at position } l'' \\
&\quad \quad \text{else} \\
&\quad \quad \quad c = l + 1 \\
&\quad \quad \quad l = c \\
&\quad \quad \quad v = \text{root} \\
\text{end} & \\
\text{until } (c > n) \quad /* n \text{ is the database size} */
\end{align*}
\]
Idea for improving the time

- Suppose we have partially matched pattern i (indicated by l, and c), but fail subsequently. If some other pattern j is to match
 - Then prefix(pattern j) = suffix [first c-l characters of pattern(i)]
An O(n) alg. For keyword matching

\[l = 1 \]
\[c = 1 \]
\[v = \text{root} \]

repeat
 if \((w = A(v, T[c]) \neq \phi)\)
 \[v = w \]
 \[c = c + 1 \]
 if \(v\) has label \(i\)
 print \(\text{"Pattern } i \text{ matches starting at position } l\)"
 else if \(v==\text{root}\)
 \[c = c + 1 \]
 \[l = c \]
 else
 \[l = c - lp[v] \]
 \[v = F[v] \]
 end
until \(c > n\)

- Start with the first position in the db, and the root node.
- If successful transition
 - Increment current pointer
 - Move to a new node
 - If terminal node “success”
- Else (if at root)
 - Increment ‘current’ pointer
 - Move ‘start’ pointer
 - Move to root
- Else
 - Move ‘start’ pointer forward
 - Move to failure node
Failure function

• Every node v corresponds to a string s_v that is a prefix of some pattern.
• Define $F[v]$ to be the node u such that s_u is the longest suffix of s_v
• If we fail to match at v, we should jump to $F[v]$, and commence matching from there
• Let $lp[v] = |s_u|$
Illustration

- What is $F(n_{10})$?
- What is $F(n_5)$?
- $F(n_3)$?
- $L_p(n_{10})$?
Illustration

\[
l = 1 \\
c = 1 \\
v = \text{root} \\
\text{repeat} \\
\quad \text{if } ((w = A(v, T[c]) \neq \emptyset) \\
\quad \quad v = w \\
\quad \quad c = c + 1 \\
\quad \quad \text{if } (v \text{ has label } i) \\
\quad \quad \quad \text{print "Pattern } i \text{ matches starting at position } l" \\
\quad \text{else if } (v == \text{root}) \\
\quad \quad c = c + 1 \\
\quad \quad l = c \\
\quad \text{else} \\
\quad \quad l = c - lp[v] \\
\quad \quad v = F[v] \\
\text{end} \\
\text{until } (c > n)
\]
Illustration

\[l = 1 \]
\[c = 1 \]
\[v = \text{root} \]
repeat
 \[(w = A(v, T[c]) \neq \phi) \]
 \[v = w \]
 \[c = c + 1 \]
 \[\text{if} \ (v \text{ has label } i) \]
 \[\text{print "Pattern } i \text{ matches starting at position } l" \]
 \[\text{else if} \ (v = \text{root}) \]
 \[c = c + 1 \]
 \[l = c \]
 \[\text{else} \]
 \[l = c - lp[v] \]
 \[v = F[v] \]
end
until \((c > n) \)
Illustration

\[l = 1 \]
\[c = 1 \]
\[v = \text{root} \]

repeat
 if \((w = A(v, T[c]) \neq \phi)\)
 \[v = w \]
 \[c = c + 1 \]
 if \((v\ \text{has label } i)\)
 print "Pattern i matches starting at position \(l\)"
 else if \((v==\text{root})\)
 \[c = c + 1 \]
 \[l = c \]
 else
 \[l = c - lp[v] \]
 \[v = F[v] \]
 end
until \((c > n)\)
Illustration

\[l = 1 \]
\[c = 1 \]
\[v = \text{root} \]

repeat
\[(w = A(v, T[c]) \neq \phi) \]
\[v = w \]
\[c = c + 1 \]
\[\text{if } (v \text{ has label } i) \]
\[\text{print } \text{“Pattern } i \text{ matches starting at position } F^t \text{”} \]
\[\text{else if } (v == \text{root}) \]
\[c = c + 1 \]
\[l = c \]
\[\text{else} \]
\[l = c - lp[v] \]
\[v = F[v] \]
\[\text{end} \]
until \((c > n)\)
Illustration

\[\text{P O T A S T P O T A T O} \]

\[l = 3 \quad c = 7 \]

\[l = 1 \]
\[c = 1 \]
\[v = \text{root} \]
\[\text{repeat} \]
\[\text{if } ((w = A(v, T[c]) \neq \phi)) \]
\[\quad v = w \]
\[\quad c = c + 1 \]
\[\quad \text{if } (v \text{ has label } i) \]
\[\quad \text{print “Pattern } i \text{ matches starting at position } l” \]
\[\text{else if } (v = \text{root}) \]
\[\quad c = c + 1 \]
\[\quad l = c \]
\[\text{else} \]
\[\quad l = c - lp[v] \]
\[\quad v = F[v] \]
\[\text{end} \]
\[\text{until } (c > n) \]
Illustration

\[
l = 7 \quad c = 7
\]

\[
\begin{align*}
&v = \text{root} \\
&\text{repeat} \\
&\quad \text{if} \ ((w = A(v, T[c]) \neq \emptyset) \\
&\quad \quad v = w \\
&\quad \quad c = c + 1 \\
&\quad \quad \text{if} \ (v \text{ has label } i) \\
&\quad \quad \quad \text{print} \ \text{"Pattern } i \text{ matches starting at position } l" \\
&\quad \quad \text{else if} \ (v = \text{root}) \\
&\quad \quad \quad c = c + 1 \\
&\quad \quad \quad l = c \\
&\quad \quad \text{else} \\
&\quad \quad \quad l = c - lp[v] \\
&\quad \quad \quad v = F[v] \\
&\quad \text{end} \\
&\text{until} \ (c > n)
\end{align*}
\]
Illustration

\[\text{P} \quad \text{O} \quad \text{T} \quad \text{A} \quad \text{S} \quad \text{T} \quad \text{P} \quad \text{O} \quad \text{T} \quad \text{A} \quad \text{T} \quad \text{O} \]

\[l = 7 \quad c = 8 \]

\begin{verbatim}
l = 1
c = 1
v = root
repeat
 if \((w = A(v,T[c]) \neq \phi)\)
 v = w
 c = c + 1
 if \((v \text{ has label } i)\)
 print "Pattern } matches starting at position }"
 else if \((v == \text{root})\)
 c = c + 1
 l = c
 else
 l = c - lp[v]
 v = F[v]
until \((c > n)\)
\end{verbatim}
Illustration

\[\text{P O T A S T P O T A T O} \]

\[l = 7 \quad c = 7 \]

\[v = \text{root} \]

\[\text{repeat} \]

\[\text{if } (w = A(v,T[c]) \neq \emptyset) \]

\[v = w \]

\[c = c + 1 \]

\[\text{if } (v \text{ has label } i) \]

\[\text{print "Pattern } i \text{ matches starting at position } l" \]

\[\text{else if } (v == \text{root}) \]

\[c = c + 1 \]

\[l = c \]

\[\text{else} \]

\[l = c - lp[v] \]

\[v = F[v] \]

\[\text{end} \]

\[\text{until } (c > n) \]
Time analysis

• In each step, either c is incremented, or l is incremented.
• Neither pointer is ever decremented \((lp[v] < c-l)\).
• l and c do not exceed n
• Total time \(\leq 2n\)

```
l = 1
c = 1
v = root
repeat
  if ((w = A(v, T[c]) \neq \phi))
    v = w
    c = c + 1
  if (v has label i)
    print “Pattern i matches starting at position l”
  else if (v==root)
    c = c + 1
    l = c
  else
    l = c - \{p[v]
    v = F[v]
  end
until (c > n)
```
Blast: Putting it all together

- Input: Query of length m, database of size n
- Select word-size, scoring matrix, gap penalties, E-value cutoff
- [Blast](#)
Blast Steps

1. Generate an automaton of all query keywords.
2. Scan database using a “Dictionary Matching” algorithm (O(n) time). Identify all hits.
3. Extend each hit using a variant of “local alignment” algorithm. Use the scoring matrix and gap penalties.
4. For each alignment with score S, compute E-value, and the P-value. Sort according to increasing E-value until the cut-off is reached.
5. Output results.
BLAST output

Distance tree of results

Sequences producing significant alignments:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
<th>Score (Bits)</th>
<th>E Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp</td>
<td>P58308</td>
<td>OX2R_MOUSE</td>
<td>Orexin receptor type 2 (0x2r) (Hypocretin r</td>
</tr>
<tr>
<td>sp</td>
<td>P56719</td>
<td>OX2R_RAT</td>
<td>Orexin receptor type 2 (0x2r) (Hypocretin rec</td>
</tr>
<tr>
<td>sp</td>
<td>Q9TUP7</td>
<td>OX2R_CANFA</td>
<td>Orexin receptor type 2 (0x2r) (Hypocretin r</td>
</tr>
<tr>
<td>sp</td>
<td>O43614</td>
<td>OX2R_HUMAN</td>
<td>Orexin receptor type 2 (0x2r) (Hypocretin r</td>
</tr>
<tr>
<td>sp</td>
<td>Q6IPH4</td>
<td>OR6B2_HUMAN</td>
<td>Olfactory receptor 6B2 (Olfactory receptor</td>
</tr>
<tr>
<td>sp</td>
<td>P09703</td>
<td>US27_HCMVA</td>
<td>G-protein coupled receptor homolog US27 (HH</td>
</tr>
<tr>
<td>sp</td>
<td>Q4QXU5</td>
<td>MRG52_MACMU</td>
<td>Mas-related G-protein coupled receptor mem</td>
</tr>
<tr>
<td>sp</td>
<td>Q76916</td>
<td>PPAR2_RAT</td>
<td>Free fatty acid receptor 2 (G-protein couple</td>
</tr>
<tr>
<td>sp</td>
<td>Q8NH53</td>
<td>O52N1_HUMAN</td>
<td>Olfactory receptor 52N1</td>
</tr>
<tr>
<td>sp</td>
<td>Q8VG90</td>
<td>OL502_MOUSE</td>
<td>Olfactory receptor 502 (Olfactory receptor</td>
</tr>
<tr>
<td>sp</td>
<td>Q9EP86</td>
<td>NPFF1_RAT</td>
<td>Neuropeptide FF receptor 1 (G-protein cou...</td>
</tr>
</tbody>
</table>
Distant hits

sp|P79242|FPRL1_PANTA
FMLP-related receptor I (FMLP-R-I)
Length=348

Score = 62.0 bits (149), Expect = 5e-09, Method: Composition-based stats.
Identities = 77/327 (23%), Positives = 136/327 (41%), Gaps = 62/327 (18%)

Query 63
IVFVVALIGNVLVCAVWKNKHMRVTNYPFVNLNSLADVNASLTCLPATLV-VDITEVTF 121
+ FV+ ++GN LV + V RTTV +NL+AD T T LP +V + +E W

Sbjct 32
VFVVLGVQGLNGV-1WQAFGRMFTRTTVCYLNLALADSFPTAT-LPFLIVSMAMGEKWP 89

Query 122
FGQSLCKVIPYLQTVSVSVLTLSCIALDRHWAICHPLMFKS--TAKRANNISIVVIW 179
PG LCK+I + +++ SV + IALDR + HP+ ++ T A IV WI

Sbjct 90
FGFLCLDKLIHVVDINLFGSVLIGFTIALDRCICVLHPWAQNHRVTSNLKIVGPWIL 149

Query 180
SCIIMIIPQAIYVECMSMLPGANKTLTPTVCDGHWGGEVPKM--------YHICFFLV 230
++ +P ++ + + + N T T WGG ++ I P++

Sbjct 150
ALVLTLPVFLPTTTVY-1PMGHTYCTPFPASWGGTFEERLKVAITLTTARGIIRFV1 205

Query 231
TYMAPLCMLILAYQIFPRKLCRQIPTGSSVQRKQKPQPSPQPRSGQGIQSARKISAVA 290
+ P+ ++ + Y I K+ + + + S

Sbjct 206
GFSLPMSIVAICYGLIAAKIHKKGMKSS------------ 324

Query 291
AEIKQIRARRRKTAMLMLVLLVLPAYCILPSLNVKLKRVF--GMFTHTEDRETVAWFTF 348
+ R+L V+ P IC+ P ++ L V+ M ++ ++ +

Sbjct 235
----------RPLRLVTLAVASPFFICWPPLQVLALLGTWLVKEMLFYGG-YKIIDLVNP 283

Query 349
SHWLVYANSAANPPIYNLPSGKPREF 375
+ L + N NP++Y P + PRE

Sbjct 284
TSSLAFFNCCNLNPMLVFVQDFPERL 310

sp|Q29003|5HT1E_PIG
5-hydroxytryptamine 1E receptor (5-HT1E) (Serotonin recep 1E) (5-HT1E)
Length=149

Score = 62.0 bits (149), Expect = 5e-09, Method: Composition-based stats.
Identities = 33/99 (33%), Positives = 59/99 (59%), Gaps = 2/99 (2%)

Query 90
NYIPIYVLNLADVLTCLPATLVVDITEWFCQQSLCKVIPYLTQTSVSVSLTSLSCIA 149
NY I +L++ D+LV + +P +++ + +W G +C+V + + +S+L L IA

Sbjct 5
NYLICSLAVTDLVLAVLVMPLSIMYVMDSWRLGYFICEVWLSVDHTCTCSILHLCVIA 64

Query 150
LDRHWAICHPLMF--KSTAKRARNISIVVIWISCIIMIP 186
LDR+AI + + + K TAKRA I+ +W +S I +P

Sbjct 65
LDRYWAIATNCAEIYARKTAKRALGMLTVWTTISIFISMP 103
End of Lecture 6