CSE182-L12

Mass Spectrometry
Peptide identification
Mass-Charge ratio

• The X-axis is not mass, but \(\frac{M+Z}{Z} \)
 – \(Z=1 \) implies that peak is at \(M+1 \)
 – \(Z=2 \) implies that peak is at \(\frac{M+2}{2} \)
 • \(M=1000, Z=2, \) peak position is at 501

• Quiz: Suppose you see a peak at 501. Is the mass 500, or is it 1000?
Isotopic peaks

- Ex: Consider peptide SAM
- Mass = 308.12802
- You should see:
 - Instead, you see
 - 308.13
 - 310.13
All atoms have isotopes

- Isotopes of atoms
 - O\textsubscript{16,18}, C-12,13, S\textsubscript{32,34}…
 - Each isotope has a frequency of occurrence
- If a molecule (peptide) has a single copy of C-13, that will shift its peak by 1 Da
- With multiple copies of a peptide, we have a distribution of intensities over a range of masses (Isotopic profile).
- How can you compute the isotopic profile of a peak?
Isotopes

- C-12 is the most common. Suppose C-13 occurs with probability 1%
- EX: SAM
 - Composition: C11 H22 N3 O5 S1
- What is the probability that you will see a single C-13?

Note that C,S,O,N all have isotopes. Can you compute the isotopic distribution?

\[
\binom{11}{1} \cdot 0.01 \cdot (0.99)^{10}
\]
Isotope Calculation

- Denote:
 - N_c: number of carbon atoms in the peptide
 - P_c: probability of occurrence of C-13 (~1%)
- Then

\[
\Pr[\text{Peak at } M] = \binom{N_c}{0} p_c^0 (1 - p_c)^{N_c}
\]

\[
\Pr[\text{Peak at } M + 1] = \binom{N_c}{1} p_c^1 (1 - p_c)^{N_c - 1}
\]

\[
N_c = 50
\]

\[
N_c = 200
\]
Isotope Calculation Example

- Suppose we consider Nitrogen, and Carbon
- N_N: number of Nitrogen atoms
- P_N: probability of occurrence of N-15
- $P(\text{peak at } M)$
- $P(\text{peak at } M+1)$?
- $P(\text{peak at } M+2)$?

Pr[Peak at M] = \[\binom{N_C}{0}p_c^0(1-p_c)^{N_C}\binom{N_N}{0}p_N^0(1-p_N)^{N_N}\]

Pr[Peak at $M+1$] = \[\binom{N_C}{1}p_c^1(1-p_c)^{N_C-1}\binom{N_N}{0}p_N^0(1-p_N)^{N_N} + \binom{N_C}{0}p_c^0(1-p_c)^{N_C}\binom{N_N}{1}p_N^1(1-p_N)^{N_N-1}\]

How do we generalize? How can we handle Oxygen ($O-16,18$)?
General isotope computation

• Definition:
 – Let $p_{i,a}$ be the abundance of the isotope with mass i Da above the least mass
 – Ex: $P_{0,C}$: abundance of C-12, $P_{2,O}$: O-18 etc.
 – Let N_a denote the number of atoms of amino-acid a in the sample.

• Goal: compute the heights of the isotopic peaks. Specifically, compute $P_i = \text{Prob}\{M+i\}$, for $i=0,1,2\ldots$
We define the characteristic polynomial of a peptide as follows:

\[\phi(x) = P_0 + P_1 x + P_2 x^2 + P_3 x^3 + \ldots \]

\[\phi(x) \] is a concise representation of the isotope profile.
Consider a single carbon atom. What is its characteristic polynomial

\[\phi(x) = P_0 + P_1 x + P_2 x^2 + P_3 x^3 + \ldots \]
\[= p_{0,c} + p_{1,c} x \]
• Suppose carbon was the only atom with an isotope C-13. In a peptide, if we have N_c carbon atoms, what is the isotope profile?

$$\phi(x) = P_0 + P_1 x + P_2 x^2 + P_3 x^3 + \ldots$$

$$= \binom{N_c}{0} p_{0,c}^N (1 - p_{0,c})^0 + \binom{N_c}{1} p_{0,c} (1 - p_{0,c})^1 x$$

$$= (p_{0,c} + p_{1,c} x)^{N_c}$$
Consider a molecule with one carbon atom, and one oxygen atom. What is the isotope profile?

\[\phi(x) = P_0 + P_1x + P_2x^2 + P_3x^3 + \ldots \]

\[= (p_{0,c} + p_{1,c}x)(p_{0,O} + p_{2,O}x^2) \]
General isotope computation

- Definition:
 - Let $p_{i,a}$ be the abundance of the isotope with mass i Da above the least mass
 - Ex: $P_{0,C}$: abundance of C-12, $P_{2,O}$: O-18 etc.
- Characteristic polynomial

- $\text{Prob}\{M+i\}$: coefficient of x^i in $\phi(x)$ (a binomial convolution)

$$\phi(x) = \prod_a \left(p_{0,a} + p_{1,a}x + p_{2,a}x^2 + \cdots \right)^{N_a}$$
Isotopic Profile Application

- In DxMS, hydrogen atoms are exchanged with deuterium
- The rate of exchange indicates how buried the peptide is (in folded state)
- Consider the observed characteristic polynomial of the isotope profile ϕ_{t_1}, ϕ_{t_2}, at various time points. Then

- The estimates of $p_{1,H}$ can be obtained by a deconvolution
- Such estimates at various time points should give the rate of incorporation of Deuterium, and therefore, the accessibility.

$$\phi_{t_2}(x) = \phi_{t_1}(x)(p_{0,H} + p_{1,H})^{N_H}$$

Not in Syllabus

CSE182
Quiz

- How can you determine the charge on a peptide?
 - Difference between the first and second isotope peak is $1/Z$

- Proposal:
 - Given a mass, predict a composition, and the isotopic profile
 - Do a ‘goodness of fit’ test to isolate the peaks corresponding to the isotope
 - Compute the difference
Ion mass computations

- Amino-acids are linked into peptide chains, by forming peptide bonds
 - Residue mass
 - \(\text{Res.Mass}(aa) = \text{Mol.Mass}(aa) - 18 \)
 - (loss of water)
Peptide chains

- \(\text{MolMass(SGFAL)} = \text{resM}(S) + \ldots \text{res}(L) + 18 \)
M/Z values for b/y-ions

- Singly charged b-ion = ResMass(prefix) + 1
- Singly charged y-ion = ResMass(suffix)+18+1
- What if the ions have higher units of charge?
De novo interpretation

• Given a spectrum (a collection of b-y ions), compute the peptide that generated the spectrum.
• A database of peptides is not given!
• Useful?
 – Many genomes have not been sequenced
 – Tagging/filtering
 – PTMs
De Novo Interpretation: Example

Ion Offsets

\[b = P + 1 \]
\[y = S + 19 = M - P + 19 \]
Computing possible prefixes

- We know the parent mass $M=401$.
- Consider a mass value 88
- Assume that it is a b-ion, or a y-ion
- If b-ion, it corresponds to a prefix of the peptide with residue mass $88-1 = 87$.
- If y-ion, $y = M - P + 19$.
 - Therefore the prefix has mass
 - $P = M - y + 19 = 401 - 88 + 19 = 332$
- Compute all possible Prefix Residue Masses (PRM) for all ions.
Putative Prefix Masses

- Only a subset of the prefix masses are correct.
- The correct mass values form a ladder of amino-acid residues

<table>
<thead>
<tr>
<th></th>
<th>Prefix Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>M=401</td>
<td>b</td>
</tr>
<tr>
<td>88</td>
<td>87</td>
</tr>
<tr>
<td>145</td>
<td>144</td>
</tr>
<tr>
<td>147</td>
<td>146</td>
</tr>
<tr>
<td>276</td>
<td>275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>G</th>
<th>E</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>87</td>
<td>144</td>
<td>273</td>
</tr>
</tbody>
</table>
Spectral Graph

- Each prefix residue mass (PRM) corresponds to a node.
- Two nodes are connected by an edge if the mass difference is a residue mass.
- A path in the graph is a de novo interpretation of the spectrum
• Each peak, when assigned to a prefix/suffix ion type generates a unique prefix residue mass.
• Spectral graph:
 – Each node u defines a putative prefix residue $M(u)$.
 – (u,v) in E if $M(v) - M(u)$ is the residue mass of an a.a. (tag) or 0.
 – Paths in the spectral graph correspond to a interpretation
Re-defining *de novo* interpretation

- Find a subset of nodes in spectral graph s.t.
 - 0, M are included
 - Each peak contributes at most one node (interpretation)(*).
 - Each adjacent pair (when sorted by mass) is connected by an edge *(valid residue mass)*
 - An appropriate objective function (ex: the number of peaks interpreted) is maximized

![Diagram of a spectral graph showing nodes 87 and 144 connected by an edge, with mass labels S, G, E, K, and M.]
Two problems

- **Too many nodes.**
 - Only a small fraction are correspond to b/y ions (leading to true PRMs) (learning problem)
- **Multiple Interpretations**
 - Even if the b/y ions were correctly predicted, each peak generates multiple possibilities, only one of which is correct. We need to find a path that uses each peak only once (algorithmic problem).
 - In general, the forbidden pairs problem is NP-hard
Too many nodes

• We will use other properties to decide if a peak is a b-y peak or not.
• For now, assume that $\delta(u)$ is a score function for a peak u being a b-y ion.
Multiple Interpretation

• Each peak generates multiple possibilities, only one of which is correct. We need to find a path that uses each peak only once (algorithmic problem).
• In general, the forbidden pairs problem is NP-hard
• However, The b,y ions have a special non-interleaving property
• Consider pairs \((b_1,y_1), (b_2,y_2)\)
 – If \(b_1 < b_2\), then \(y_1 > y_2\)
- If we consider only b,y ions, ‘forbidden’ node pairs are non-intersecting,
- The de novo problem can be solved efficiently using a dynamic programming technique.
The forbidden pairs method

- Sort the PRMs according to increasing mass values.
- For each node \(u \), \(f(u) \) represents the forbidden pair.
- Let \(m(u) \) denote the mass value of the PRM.
- Let \(\delta(u) \) denote the score of \(u \).
- Objective: Find a path of maximum score with no forbidden pairs.
D.P. for forbidden pairs

- Consider all pairs u,v
 - \(m[u] \leq M/2, \ m[v] > M/2 \)

- Define \(S(u,v) \) as the best score of a forbidden pair path from
 - 0->u, and v->M

- Is it sufficient to compute \(S(u,v) \) for all u,v?
D.P. for forbidden pairs

• Note that the best interpretation is given by

\[
\max_{((u,v)\in E)} S(u,v)
\]
D.P. for forbidden pairs

- Note that we have one of two cases.
 1. Either \(u > f(v) \) (and \(f(u) < v \))
 2. Or, \(u < f(v) \) (and \(f(u) > v \))
- Case 1.
 - Extend \(u \), do not touch \(f(v) \)

\[
S(u, v) = \max_{u':(u',u) \in E} \left(S(u', v) + \delta(u) \right)
\]
The complete algorithm

for all u /*increasing mass values from 0 to M/2 */
for all v /*decreasing mass values from M to M/2 */
 if (u < f[v])
 \[S[u, v] = \max_{(v, w) \in E \atop w \neq f(u)} \left(S[u, w] + \delta(v) \right) \]
 else if (u > f[v])
 \[S[u, v] = \max_{(w, u) \in E \atop w \neq f(v)} \left(S[w, v] + \delta(u) \right) \]
If (u,v) \in E
 /* maxI is the score of the best interpretation */
 maxI = \max \{ maxI, S[u,v] \}
EXTRA SLIDES
De Novo: Second issue

• Given only b,y ions, a forbidden pairs path will solve the problem.
• However, recall that there are MANY other ion types.
 – Typical length of peptide: 15
 – Typical # peaks? 50-150?
 – #b/y ions?
 – Most ions are “Other”
 • a ions, neutral losses, isotopic peaks….
De novo: Weighting nodes in Spectrum Graph

- Factors determining if the ion is b or y
 - Intensity (A large fraction of the most intense peaks are b or y)
 - Support ions
 - Isotopic peaks
De novo: Weighting nodes

- A probabilistic network to model support ions (Pepnovo)

\[
\text{Score}(m, S) = \log \frac{P_{\text{CID}}(I|m, S)}{P_{\text{RAND}}(I|m, S)}
\]

Figure 1. Probabilistic network for the CID fragmentation model of doubly charged tryptic peptides measured in an ion trap mass spectrometer. Three different types of relations are modeled in this network: (1) correlations between fragment ions (regular arrows); (2) dependencies due to the relative position of the cleavage site in the peptide (dashed arrows); (3) influence of flanking amino acids to the cleavage site (bold arrows).
De Novo Interpretation Summary

- The main challenge is to separate b/y ions from everything else (weighting nodes), and separating the prefix ions from the suffix ions (Forbidden Pairs).
- As always, the abstract idea must be supplemented with many details.
 - Noise peaks, incomplete fragmentation
 - In reality, a PRM is first scored on its likelihood of being correct, and the forbidden pair method is applied subsequently.
- In spite of these algorithms, de novo identification remains an error-prone process. When the peptide is in the database, db search is the method of choice.
The dynamic nature of the cell

- The proteome of the cell is changing
- Various extra-cellular, and other signals activate pathways of proteins.
- A key mechanism of protein activation is PT modification
- These pathways may lead to other genes being switched on or off
- Mass Spectrometry is key to probing the proteome
Biol. Data analysis: Review
Other static analysis is possible
A Static picture of the cell is insufficient

- Each Cell is continuously active,
 - Genes are being transcribed into RNA
 - RNA is translated into proteins
 - Proteins are PT modified and transported
 - Proteins perform various cellular functions
- Can we probe the Cell dynamically?
 - Which transcripts are active?
 - Which proteins are active?
 - Which proteins interact?
Counting transcripts

- cDNA from the cell hybridizes to complementary DNA fixed on a ‘chip’.
- The intensity of the signal is a ‘count’ of the number of copies of the transcript.
Quantitation: transcript versus Protein Expression

Our Goal is to construct a matrix as shown for proteins, and RNA, and use it to identify differentially expressed transcripts/proteins
Gene Expression

- Measuring expression at transcript level is done by micro-arrays and other tools.
- Expression at the protein level is being done using mass spectrometry.
- Two problems arise:
 - Data: How to populate the matrices on the previous slide? (‘easy’ for mRNA, difficult for proteins)
 - Analysis: Is a change in expression significant? (Identical for both mRNA, and proteins).
- We will consider the data problem here. The analysis problem will be considered when we discuss micro-arrays.
MS based Quantitation

- The intensity of the peak depends upon
 - **Abundance**, ionization potential, substrate etc.
- We are interested in abundance.
- Two peptides with the same abundance can have very different intensities.
- **Assumption:** *relative* abundance can be measured by comparing the ratio of a peptide in 2 samples.
Quantitation issues

• The two samples might be from a complex mixture. How do we identify identical peptides in two samples?
• In micro-array this is possible because the cDNA is spotted in a precise location? Can we have a ‘location’ for proteins/peptides
LC-MS based separation

- As the peptides elute (separated by physiochemical properties), spectra is acquired.
LC-MS Maps

- A peptide/feature can be labeled with the triple (M,T,I):
 - monoisotopic M/Z, centroid retention time, and intensity
- An LC-MS map is a collection of features
Time scaling: Approach 1 (geometric matching)

- Match features based on M/Z, and (loose) time matching. Objective $\Sigma f(t_1-t_2)^2$
- Let $t_2' = a t_2 + b$. Select a, b so as to minimize $\Sigma f(t_1-t_2')^2$
Geometric matching

- Make a graph. Peptide a in LCMS1 is linked to all peptides with identical m/z.
- Each edge has score proportional to t_1/t_2
- Compute a maximum weight matching.
- The ratio of times of the matched pairs gives a.
- Rescale and compute the scaling factor $T_{M/Z}$.
Approach 2: Scan alignment

- Each time scan is a vector of intensities.
- Two scans in different runs can be scored for similarity (using a dot product)

\[
S_{1i} = 10 \ 5 \ 0 \ 0 \ 7 \ 0 \ 0 \ 2 \ 9
\]

\[
S_{2j} = 9 \ 4 \ 2 \ 3 \ 7 \ 0 \ 6 \ 8 \ 3
\]

\[
M(S_{1i}, S_{2j}) = \sum_k S_{1i}(k) S_{2j}(k)
\]
Scan Alignment

- Compute an alignment of the two runs
- Let $W(i,j)$ be the best scoring alignment of the first i scans in run 1, and first j scans in run 2

$$W(i,j) = \max \left\{ W(i-1,j-1) + M[S_{1i}, S_{2j}] \\
W(i-1,j) + \ldots \\
W(i,j-1) + \ldots \right\}$$

- Advantage: does not rely on feature detection.
- Disadvantage: Might not handle affine shifts in time scaling, but is better for local shifts
Chemistry based methods for comparing peptides
ICAT

- The reactive group attaches to Cysteine
- Only Cys-peptides will get tagged
- The biotin at the other end is used to pull down peptides that contain this tag.
- The X is either Hydrogen, or Deuterium (Heavy)
 - Difference = 8Da
ICAT

- ICAT reagent is attached to particular amino-acids (Cys)
- Affinity purification leads to simplification of complex mixture
Differential analysis using ICAT
ICAT issues

- The tag is heavy, and decreases the dynamic range of the measurements.
- The tag might break off
- Only Cysteine containing peptides are retrieved Non-specific binding to strepdavidin
Serum ICAT data

MA13_02011_02_ALL01Z3I9A* Overview (exhibits 'stack-ups')
• Instead of pairs, we see entire clusters at 0, +8, +16, +22.

• ICAT based strategies must clarify ambiguous pairing.
ICAT problems

- Tag is bulky, and can break off.
- Cys is low abundance
- MS$_2$ analysis to identify the peptide is harder.
SILAC

- A novel stable isotope labeling strategy
- Mammalian cell-lines do not ‘manufacture’ all amino-acids. Where do they come from?
- Labeled amino-acids are added to amino-acid deficient culture, and are incorporated into all proteins as they are synthesized
- No chemical labeling or affinity purification is performed.
- Leucine was used (10% abundance vs 2% for Cys)
SILAC vs ICAT

- Leucine is higher abundance than Cys
- No affinity tagging done
- Fragmentation patterns for the two peptides are identical
 - Identification is easier

Ong et al. MCP, 2002
Incorporation of Leu-d3 at various time points

- Doubling time of the cells is 24 hrs.
- Peptide = VAPEEHPVLLTEAPLNPK
- What is the charge on the peptide?
Quantitation on controlled mixtures
Identification

- MS/MS of differentially labeled peptides
Peptide Matching

- Computational: Under identical Liquid Chromatography conditions, peptides will elute in the same order in two experiments.
 - These peptides can be paired computationally
- SILAC/ICAT allow us to compare relative peptide abundances in a single run using an isotope tag.