Announcements

- Homework 3 is due May 18, 11:59 PM
- Homework 4 will be assigned this week
- Reading:
 - Chapter 15: Learning to Classify
 - Chapter 16: Classifying Images
 - Chapter 17: Detecting Objects in Images

A Rough Recognition Spectrum

Appearance-Based Recognition

Increasing Generality

Appearance-Based Vision for Instances Level Recognition

- A Pattern Classification Viewpoint
 1. Bayesian Classification
 2. Appearance Manifolds
 3. Feature Space
 4. Dimensionality Reduction

Feature Space

- Sketch of a Pattern Recognition Architecture
Sliding window approaches

Example: Face Detection

- Scan window over image
- Search over position & scale
- Classify window as either:
 - Face
 - Non-face

Classifier

Feature Space

- What are the features?
- What is the classifier?

The Space of Images

- We will treat an d-pixel image as a point in an d-dimensional space, \(x \in \mathbb{R}^d \).
- Each pixel value is a coordinate of \(x \).

More features

- Filtered image
- Filter with multiple filters (bank of filters)
- Histogram of colors
- Histogram of Gradients (HOG)
- Haar wavelets
- Scale Invariant Feature Transform (SIFT)
- Speeded Up Robust Feature (SURF)

Feature Space

- What are the features?
- What is the classifier?
Nearest Neighbor Classifier

\{ R_j \} are set of training images.

\[ID = \arg \min_j \text{dist}(R_j, I) \]

Variation of this:

\[k \] nearest neighbors

Do features vectors have structure in the image space?

- Faces of individuals cluster in the image space. (Not true)
- Faces of individuals are confined to a linear or affine subspace of \(\mathbb{R}^d \)
- Faces of an individual are approximated by a linear subspace
- Faces and objects lie on or near a manifold in the space of images

An idea:

Represent the set of images as a linear subspace

What is a linear subspace?

Let \(V \) be a vector space and let \(W \) be a subset of \(V \). Then \(W \) is a subspace if and only if:

1. The null vector \(0 \) is in \(W \)
2. If \(u \) and \(v \) are elements of \(W \), then any linear combination of \(u \) and \(v \) is an element of \(W \): \(au + bv \in W \)
3. If \(u \) is an element of \(W \) and \(c \) is a scalar, then the scalar product \(cu \in W \)

- A \(k \)-dimensional subspace is spanned by \(k \) linearly independent vectors. It is spanned by a \(k \)-dimensional orthogonal basis

Linear Subspaces & Linear Projection

- A \(d \)-pixel image \(x \in \mathbb{R}^d \) can be projected to a low-dimensional feature space \(y \in \mathbb{R}^k \) by

\[y = Wx \]

where \(W \) is an \(k \) by \(d \) matrix

- Each training image is projected to the subspace
- Recognition is performed in \(\mathbb{R}^k \) using, for example, nearest neighbor
- How do we choose a good \(W \)?

Linear Subspaces & Recognition

1. Eigenfaces: Approximate all training images as a single linear subspace
2. Distance to subspace: Represent lighting variation without shadowing for a single individual as a 3D linear subspace. \(n \) individuals are modeled as \(n \) 3D linear subspaces
3. Fisherfaces: Project all training images to a single subspace that enhances discriminability

Comments on Nearest Neighbor

- Sometimes called “Template Matching”
- Variations on distance function (e.g., \(L_1 \), robust distances)
- Multiple templates per class - perhaps many training images per class
- Expensive to compute \(k \) distances, especially when each image is big (\(d \)-dimensional)
- May not generalize well to unseen examples of class
- No worse than twice the error rate of the optimal classifier (if enough training samples)
- Some solutions:
 - Bayesian classification
 - Dimensionality reduction
Eigenfaces: Principal Component Analysis (PCA)

Assume we have a set of n feature vectors \(\mathbf{x}_i \) (i = 1, ..., n) in \(\mathbb{R}^m \). Write
\[
\mu = \frac{1}{n} \sum \mathbf{x}_i \\
\mathbf{E} = \frac{1}{n-1} \sum (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^T
\]
The unit eigenvectors of \(\Sigma \) — which we write as \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \), where the order is given by the size of the eigenvalue and \(\lambda_1 \) has the largest eigenvalue — give a set of features with the following properties:
- They are independent.
- Projection onto the basis \(\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \) gives the \(i \)-dimensional set of linear features that preserves the most variance.

Algorithm 23.5: Principal component analysis identifies a collection of linear features that are independent, and captures as much variance as possible from a dataset. Eigen decomposition of covariance matrix.

Alternative: singular value decomposition of (mean-deviation form of) data matrix.

SVD Properties

- In Matlab \([\mathbf{U} \; \mathbf{S} \; \mathbf{V}] = \text{svd}(\mathbf{A}) \), and you can verify that: \(\mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T \)
- \(r = \text{Rank}(\mathbf{A}) = \# \) of non-zero singular values.
- \(\mathbf{U}, \mathbf{V} \) give an orthonormal bases for the subspaces of \(\mathbf{A} \):
 - 1st \(r \) columns of \(\mathbf{U} \): Column space of \(\mathbf{A} \)
 - Last \(m - r \) columns of \(\mathbf{U} \): Left nullspace of \(\mathbf{A} \)
 - 1st \(r \) columns of \(\mathbf{V} \): Row space of \(\mathbf{A} \)
 - Last \(n - r \) columns of \(\mathbf{V} \): (Right) nullspace of \(\mathbf{A} \)
- For some \(d \) where \(d \leq r \), the first \(d \) column of \(\mathbf{U} \) provide the best \(d \)-dimensional basis for columns of \(\mathbf{A} \) in least squares sense.

Performing PCA with SVD

- Singular values of \(\mathbf{U} \) are the square roots of eigenvalues of \(\mathbf{A} \mathbf{A}^T \) (and \(\mathbf{A}^T \mathbf{A} \))
- Columns of \(\mathbf{U} \) are corresponding Eigenvectors of \(\mathbf{A} \mathbf{A}^T \)
- And \(\sum a_i^2 = [a_1 \ a_2 \ldots \ a_1 \ a_2 \ldots a_1] \mathbf{A}^T \)
- Covariance matrix is:
\[
\Sigma = \frac{1}{n-1} \sum (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^T
\]
- So, ignoring \(1/(n-1) \), subtract mean image \(\mu \) from each input image, create a \(d \) by \(n \) data matrix, and perform thin SVD on the data matrix. \(\mathbf{D} = [x_1 - \mu \ | \ x_2 - \mu \ | \ldots \ x_n - \mu] \)

Economy SVD

- Any \(m \) by \(n \) matrix \(\mathbf{A} \) may be factored such that
\[
\mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T
\]
- If \(m > n \), then one can view \(\Sigma \) as: (i.e., more pixels than images)
\[
\Sigma = \begin{bmatrix}
\Sigma^T \\
0
\end{bmatrix}
\]
- Where \(\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_s) \) with \(s = \min(m,n) \), and lower matrix is \((n-m \times m) \) of zeros.
- Alternatively, you can write:
\[
\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T
\]
- In Matlab, economy SVD is: \([\mathbf{U} \; \mathbf{S} \; \mathbf{V}] = \text{svd}(\mathbf{A}, \text{econ}) \)

PCA Example

First Principal Component
Direction of Maximum Variance
Eigenfaces

Modeling
1. Given a collection of \(n \) training images \(x_i \), represent each one as a \(d \)-dimensional column vector
2. Compute the mean image and covariance matrix
3. Compute \(k \) Eigenvectors of the covariance matrix corresponding to the \(k \) largest Eigenvalues and form matrix \(W = [u_1, u_2, \ldots, u_k] \) (Or perform using SVD)
 - Note that the Eigenvectors are images
4. Project the training images to the \(k \)-dimensional Eigenspace. \(y_i = W x_i \)

Recognition
1. Given a test image \(x \), project the vectorized image to the Eigenspace by \(y = W x \)
2. Perform classification of \(y \) to the projected training images

Why is \(W \) a good projection?
- The linear subspace spanned by \(W \) maximizes the variance (i.e., the spread) of the projected data.
- \(W \) spans a subspace that is the best approximation to the data in a least squares sense. E.g., \(W \) is the subspace that minimizes the the sum of the squared distances from each datapoint to the the subspace.

Eigenfaces: Training Images

[Turk, Pentland 91]

Difficulties with PCA
- Projection may suppress important detail
 - smallest variance directions may not be unimportant
- Method does not take discriminative task into account
 - typically, we wish to compute features that allow good discrimination
 - not the same as largest variance or minimizing reconstruction error.

Alternative projections
Fisherfaces: Class specific linear projection

- An n-pixel image \(x \in \mathbb{R}^d \) can be projected to a low-dimensional feature space \(y \in \mathbb{R}^k \) by
 \[
y = Wx
 \]
 where \(W \) is a \(k \times d \) matrix
- Recognition is performed using nearest neighbor in \(\mathbb{R}^k \)
- How do we choose a good \(W \)?

PCA & Fisher’s Linear Discriminant

PCA (Eigenfaces)

Maximizes projected total scatter

\[
W_{PC} = \arg \max_{W} \|W^T S_W W\|
\]

Fisher’s Linear Discriminant

Maximizes ratio of projected between-class to projected within-class scatter

\[
W_{FLD} = \arg \max_{W} \frac{\|W^T S_B W\|}{\|W^T S_W W\|}
\]

Computing the Fisher Projection Matrix

\[
W_{FLD} = \arg \max_{W} \frac{\|W^T S_B W\|}{\|W^T S_W W\|} = \left[w_1, w_2, \ldots, w_m \right]
\]

\(W_{FLD} \) is the set of generalized eigenvectors of \(S_W \) and \(S_B \) corresponding to the \(m \) largest generalized eigenvalues \(\lambda_i \), \(i = 1, 2, \ldots, m \), i.e.,

\[
S_B w_i = \lambda_i S_W w_i, \quad i = 1, 2, \ldots, m
\]

- The \(w_i \) are orthonormal
- There are at most \(c-1 \) non-zero generalized Eigenvalues, so \(m \leq c-1 \)
- Can be computed with \(eig \) in Matlab

Fisherfaces

- Since \(S_W \) is rank \(N-c \), project training set to subspace spanned by first \(N-c \) principal components of the training set.
- Apply FLD to \(N-c \) dimensional subspace yielding \(c-1 \) dimensional feature space.

- Fisher’s Linear Discriminant projects away the within-class variation (lighting, expressions) found in training set.
- Fisher’s Linear Discriminant preserves the separability of the classes.

PCA vs. FLD

- Between-class scatter
 \[
 S_B = \sum_{i=1}^{c} \sum_{x \in \mathcal{C}_i} (x - \mu_i)(x - \mu_i)^T
 \]
- Within-class scatter
 \[
 S_W = \sum_{i=1}^{c} \sum_{x \in \mathcal{C}_i} (x - \mu_i)(x - \mu_i)^T
 \]
- Total scatter
 \[
 S_T = \sum_{i=1}^{c} \sum_{x \in \mathcal{C}_i} (x - \mu)(x - \mu)^T = S_W + S_B
 \]

- Where
 - \(c \) is the number of classes
 - \(\mu_i \) is the mean of class \(\mathcal{C}_i \)
 - \(| \mathcal{C}_i | \) is number of samples of \(\mathcal{C}_i \)
Harvard Face Database

- 10 individuals
- 66 images per person
- Train on 6 images at 15°
- Test on remaining images

Recognition Results: Lighting Extrapolation

Next Lecture

- Recognition, detection, and classification
- Reading:
 - Chapter 15: Learning to Classify
 - Chapter 16: Classifying Images
 - Chapter 17: Detecting Objects in Images