Lecture 6: Reliable Transmission

CSE 123: Computer Networks
Alex C. Snoeren

HW 1 due WEDNESDAY
Lecture 6 Overview

- Finishing Error Detection
 - Cyclic Remainder Check (CRC)

- Handling errors
 - Automatic Repeat Request (ARQ)
 - Acknowledgements (ACKs) and timeouts
 - Stop-and-Wait
Checksums are easy to compute, but very fragile
- In particular, *burst* errors are frequently undetected
- We’d rather have a scheme that “smears” parity

Need to remain easy to implement in hardware
- So far just shift registers and an XOR gate

We’ll stick to Modulo-2 arithmetic
- Multiplication and division are XOR-based as well
- Let’s do some examples…
Modulo-2 Arithmetic

- Multiplication

\[
\begin{align*}
1101 \\
110 \\
\hline
0000 \\
11010 \\
110100 \\
101110 \\
\hline
101110
\end{align*}
\]

- Division

\[
\begin{align*}
1101 \\
110 \overline{101110} \\
\hline
110 \\
110 \\
\hline
111 \\
110 \\
\hline
011 \\
000 \\
\hline
110
\end{align*}
\]
Cyclic Remainder Check

- Idea is to divide the incoming data, \(D \), rather than add
 - The divisor is called the generator, \(g \)
- We can make a CRC resilient to \(k \)-bit burst errors
 - Need a generator of \(k+1 \) bits
- Divide \(2^kD \) by \(g \) to get remainder, \(r \)
 - Remainder is called frame check sequence
- Send \(2^kD - r \) (i.e., \(2^kD \) XOR \(r \))
 - Note \(2^kD \) is just \(D \) shifted left \(k \) bits
 - Remainder must be at most \(k \) bits
- Receiver checks that \((2^kD-r)/g = 0 \)
Error Detection – CRC

- View data bits, D, as a binary number
- Choose r+1 bit pattern (generator), G
- Goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - Receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - Can detect all burst errors less than r+1 bits
- Widely used in practice (Ethernet, FDDI, ATM)

\[
D \cdot 2^r \oplus R
\]

\[D: \text{data bits to be sent} \quad R: \text{CRC bits}\]

bit pattern

mathematical formula

CSE 123 – Lecture 6: Reliable Transmission
CRC: Rooted in Polynomials

- We’re *actually* doing polynomial arithmetic
 - Each bit is actually a coefficient of corresponding term in a \(k \)-th degree polynomial

\[
1101 \text{ is } (1 \times X^3) + (1 \times X^2) + (0 \times X^1) + (1 \times X^0)
\]

- Why do we care?
 - Can use the properties of finite fields to analyze effectiveness
 - Says any generator with two terms catches single bit errors
CRC Example Encoding

\[x^3 \quad x^2 \quad 1 \quad = \quad 1101 \]
\[x^7 \quad x^4 \quad x^3 \quad x \quad = \quad 10011010 \]

Generator
Message

Message plus \(k \) zeros (\(\ast 2^k \))

Result:
Transmit message followed by remainder:

\[10011010101 \]
Key observation is only subtract when MSB is one
- Recall that subtraction is XOR
- No explicit check for leading one by using as input to XOR

Hardware cost very similar to checksum
- We’re only interested in remainder at the end
- Only need k registers as remainder is only k bits
CRC Example Decoding

\[x^3 \ x^2 \ 1 \]
\[x^{10} \ x^7 \ x^6 \ x^4 \ x^2 \ 1 = 1101 \]
\[10011010101 \]

Generator

Received Message

\[10011010101 \]

1101

Received message, no errors

Result:

CRC test is passed

\[\text{Remainder} \]
\[D \mod g \]

\[0 \]
CRC Example Failure

\[x^3 \ x^2 \ 1 \quad = 1101 \quad \text{Generator} \]
\[x^{10} \ x^7 \ x^5 \ x^4 \ x^2 \ 1 \quad = 10010110101 \quad \text{Received Message} \]

\[1101 \]

\[10010\overline{1}0\overline{1}01\overline{1} \]

\[1101 \]

\[1000 \]
\[1101 \]

\[1011 \]
\[1101 \]

\[1101 \]
\[1101 \]

\[0101 \]

\[k + 1 \text{ bit check sequence } g, \] equivalent to a degree-k polynomial

Result:
CRC test failed

CSE 123 – Lecture 6: Reliable Transmission
Common Generators

<table>
<thead>
<tr>
<th>Generator</th>
<th>Generator Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-8</td>
<td>(x^8 \ x^2 \ x^1 \ 1)</td>
</tr>
<tr>
<td>CRC-10</td>
<td>(x^{10} \ x^9 \ x^5 \ x^4 \ x^1 \ 1)</td>
</tr>
<tr>
<td>CRC-12</td>
<td>(x^{12} \ x^{11} \ x^3 \ x^2 \ x^1 \ 1)</td>
</tr>
<tr>
<td>CRC-16</td>
<td>(x^{16} \ x^{15} \ x^2 \ 1)</td>
</tr>
<tr>
<td>CRC-CCITT</td>
<td>(x^{16} \ x^{12} \ x^5 \ 1)</td>
</tr>
<tr>
<td>CRC-32</td>
<td>(x^{32} \ x^{26} \ x^{23} \ x^{22} \ x^{16} \ x^{12} \ x^{11} \ x^{10} \ x^8 \ x^7 \ x^5 \ x^4 \ x^2 \ x^1 \ 1)</td>
</tr>
</tbody>
</table>
Error Handling Summary

- Add redundant bits to detect if frame has errors
 - A few bits can detect errors
 - Need more to correct errors

- Strength of code depends on Hamming Distance
 - Number of bitflips between codewords

- Checksums and CRCs are typical methods
 - Both cheap and easy to implement in hardware
 - CRC much more robust against burst errors
Picking up the Pieces

- Link layer is lossy
 - We deliberately threw away corrupt frames last lecture
 - Infrequent bit errors still lead to occasional frame errors
 » 10,000+ bits in each frame

- Things get even harrier if we consider multiple links
 - In a few lectures, we’ll start sending frames on long trips
 - Each intermediate stop might lose, corrupt, reorder, etc.
 - Regardless of cause, we’ll call loss events drops

- We want to provide reliable, in-order delivery
 - Can—and will—do this at multiple layers
Moving up the Stack

CSE 123 – Lecture 6: Reliable Transmission
Reliable Transmission

- The data networking version of the same problem
 - How do we reliably send a message when packets can be lost/corrupted in the network?

- Two options
 - Detect a loss/corruption and retransmit
 - Send data redundantly to tolerate loss/corruption
Simple Idea: ARQ

- Receiver sends **acknowledgments** (ACKs)
 - Sender “times out” and retransmits if it doesn’t receive them
- Basic approach is generically referred to as **Automatic Repeat Request** (ARQ)
Not So Fast…

- Loss can occur on ACK channel as well
 - Sender cannot distinguish data loss from ACK loss
 - Sender will retransmit the data frame
- ACK loss—or early timeout—results in duplication
 - The receiver thinks the retransmission is new data
Sequence numbers solve this problem
- Receiver can simply ignore duplicate data
- But must still send an ACK! (Why?)

Simplest ARQ: Stop-and-wait
- Only one outstanding frame at a time
Stop-and-Wait Performance

- Lousy performance if xmit 1 pkt \ll prop. delay
 - How bad?

- Want to utilize all available bandwidth
 - Need to keep more data “in flight”
 - How much? Remember the bandwidth-delay product?

- Also limited by quality of timeout (how long?)

CSE 123 – Lecture 6: Reliable Transmission
Pipelined Transmission

- Keep multiple packets “in flight”
 - Allows sender to make efficient use of the link
 - Sequence numbers ensure receiver can distinguish frames

- Sender buffers outstanding un-acked packets
 - Receiver ACKs the highest consecutive frame received
 » ACKs are cumulative (covers current frame and all previous)
For Next Time

- Read 2.6 in P&D
- Homework due WEDNESDAY