Lecture 3:
Modulation & Clock Recovery

CSE 123: Computer Networks
Alex C. Snoeren
Lecture 3 Overview

● Signaling constraints
 ◆ Shannon’s Law
 ◆ Nyquist Limit

● Encoding schemes
 ◆ Clock recovery
 ◆ Manchester, NRZ, NRZI, etc.
Ways to measure a channel

- How fast?
 - **Bandwidth** measured in bits per second
 » Yes, this is an abuse of terminology—sorry.
 - Often talk about KBps or Mbps – Bytes vs bits

- How long was the wait?
 - **Delay** (one-way or round trip) measured in seconds

- How efficiently?
 - **Overhead** measured in bits or seconds or cycles or…

- Any mistakes?
 - **Error rate** measured in terms of probability of flipped bit
Ok, recall from last class…

- No channel is perfect and the original signal gets modified along the way
 - Attenuation: signal power absorbed by medium
 - Distortion: frequency, phase changes
 - Noise: random background “signals”

- Different mediums distort different signals differently
- Note: that here “bandwidth” means frequency over which signals cannot pass through channel
Sampling

- To reconstruct signal we need to sample it.
Intersymbol Interference

- Bandlimited channels cannot respond faster than some maximum frequency f
 - Channel takes some time to settle
- Attempting to signal too fast will mix symbols
 - Previous symbol still “settling in”
 - Mix (add/subtract) adjacent symbols
 - Leads to intersymbol interference (ISI)

- OK, so just how fast can we send symbols?
Speed Limit: Nyquist

- In a channel bandlimited to f, we can send at maximum symbol (baud) rate of $2f$ without ISI
Multiple Bits per Symbol

- Nyquist limits the number of symbols per second we can send, but doesn’t talk about the information content in each symbol

- Couldn’t we send *multiple* bits per symbol
 - E.g., multiple voltage levels instead of just high/low
 - Four levels gets you two bits, $\log_2 M$ in general (M levels)

- Can combine this observation with Nyquist
 - *Channel capacity*: $C < 2B \log_2(M)$

- Why not infinite levels? Infinite bandwidth no?
Noise matters

- Real channels are *noisy*... noise creates measurement challenges

- Example:
 - Encode 4 values using voltage
 - 2 bits per symbol
 - Symbols at 3V, 2V, 1V and 0V
 - What if noise is 0.5V?
 - If you get line level of 2.5V then what symbol is it? 11 or 10?

- Limited to $\sim \log_2(\frac{S}{2N})$ bits per symbol
 (S = signal power, N = Noise)
 - Previous example: $S = 3V-0V=3V$, $N=0.5V$, so we can have $\log_2(3/1) = 1.58$ bits per symbol
Shannon’s Law

- Shannon considered noisy channels and derived

\[C = B \log (1 + S/N) \]

- Gives us an upper bound on any channel’s performance regardless of signaling scheme

- Old school modems approached this limit
 - \(B = 3000\text{Hz}, \ S/N = 30\text{dB} = 1000 \)
 - \(C = 3000 \times \log(1001) \approx 30\text{kbps} \)
 - 28.8Kbps – anyone remember dialup?
How long to send a message?

- Transmit time $T = \frac{M}{R} + D$
 - 10 Mbps Ethernet LAN (M=1KB)
 - $\frac{M}{R} = \sim 1$ ms, $D = \sim 5$ us
 - 155 Mbps cross country ATM link (M=1KB)
 - $\frac{M}{R} = \sim 50$ us, $D = 40-100$ ms

- Where are the bits in the mean time?
 - In transit inside the network (“in the pipe”)

- $R \times D$ is called the **bandwidth-delay product**
 - How many bits can be “stored” be stored in transit
 - Colloquially, we say “fill the pipe”
Common Link Speeds

- Copper based off of old phone-line provisioning
 - Basic digital service was 64-Kbps ISDN line
 - Everything else is an integer multiple
 » T-1 is 24 circuits 24 * 64 = 1.544 Mbps
 » T-3 is 28 T-1s, or 28 * 1.544 = 44.7 Mbps

- Optical links based on STS standard
 - STS is electrical signaling, OC is optical transmission
 - Base speed comes from STS-1 at 51.84 Mbps
 - OC-3 is 3 * 51.84 = 155.25 Mbps

- Move to asymmetric link schemes
 - Your service at home is almost surely DOCSIS or ADSL
Next problem: Clock recovery

- How does the receiver know when to sample the signal?
 - Sampling rate: How often to sample?
 - Sampling phase:
 » When to start sampling? (getting in phase)
 » How to adjust sampling times (staying in phase)
Why the sampling rate matters:

- Signal could have multiple interpretations

Which of these is correct?
Nyquist Revisited

- Sampling at the correct rate \((2f)\) yields actual signal
 - Always assume lowest-frequency wave that fits samples

- Sampling too slowly yields aliases
The Importance of Phase

- Need to determine when to START sampling, too
Clock Recovery

- Using a training sequence to get receiver lined up
 - Send a few, known initial training bits
 - Adds inefficiency: only m data bits out of n transmitted

- Need to combat clock drift as signal proceeds
 - Use transitions to keep clocks synched up

- Question is, how often do we do this?
 - Quick and dirty every time: asynchronous coding
 - Spend a lot of effort to get it right, but amortize over lots of data: synchronous coding
Asynchronous Coding

- Encode several bits (e.g. 7) together with a leading “start bit” and trailing “stop bit”
- Data can be sent at any time

- Start bit transition kicks off sampling intervals
 - Can only run for a short while before drifting
Example: RS232 serial lines

- Uses two voltage levels (+15V, -15V), to encode single bit binary symbols
- Needs long idle time – limited transmit rate

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>idle</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>stop</td>
<td></td>
</tr>
<tr>
<td>idle</td>
<td></td>
</tr>
</tbody>
</table>

Courtesy Robin Kravets
Synchronous coding

- Encode many bits (thousands) together
 - Amortize cost of learning clock information from start bits (preamble) and stop bits (trailer)
 - Continuously “learn” clock from data stream
 » Watch for 0-1 or 1-0 transitions, and adjust clock
 » Called clock recovery process

- Examples
 - NRZ
 - NRZI
 - Manchester
 - 4B/5B
 - Many others…
Summary

- **Signaling & Modulation**
 - Transforming digital signal to and from analog representation
 - Fundamental limits (Shannon)
 - Lots of ways to encode signal (modulation) onto a given medium

- **Clock recovery**
 - Receiver needs to adjust its sampling times to best extract signal from channel
 - Sender can code signal to make it far easier to do this
For Next Class

- Read 2.3
- Layering next