Lecture 24:
Scheduling and QoS

CSE 123: Computer Networks
Alex C. Snoeren
Lecture 24 Overview

- Scheduling
 - (Weighted) Fair Queuing

- Quality of Service basics
 - Integrated Services
 - Differentiated Services
So far we’ve done flow-based **traffic policing**
- Limit the rate of one flow regardless of the load in the network

In general, need **scheduling**
- Dynamically allocate resources when multiple flows compete
- Give each “flow” (or traffic class) own queue (at least theoretically)

Weighted fair queuing
- Proportional share scheduling
- Schedule round-robin among queues in proportion to some weight parameter
Our Previous Example

1 UDP (10 Mbps) and 31 TCPs sharing a 10 Mbps line
UDP vs. TCP w/FIFO
TCP vs. UDP w/Fair Queuing

Throughput (Mbps)

Flow Number

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32

CSE 123 – Lecture 24: Scheduling & QoS
(Weighted) Fair Queuing

Flow 1
Flow 2
Flow n

I/P

O/P
Maintain a queue for each flow
 - What is a flow?

Implements **max-min fairness**: each flow receives
\[\min(r_i, f) \], where
 - \(r_i \) – flow arrival rate
 - \(f \) – link fair rate (see next slide)

Weighted Fair Queuing (WFQ) – associate a weight with each flow to divvy bandwidth up non-equally
If link congested, compute f such that

$$\sum_i \min(r_i, f) = C$$

$f = 4$:
- $\min(8, 4) = 4$
- $\min(6, 4) = 4$
- $\min(2, 4) = 2$
Another Example

- Associate a weight w_i with each flow i
- If link congested, compute f such that

$$\sum_i \min(r_i, f \times w_i) = C$$

If $\sum_k w_k \leq C$, flow i is guaranteed to be allocated a rate $\geq w_i$.

Another Example

$w_1 = 3$ $w_2 = 1$ $w_3 = 1$

If link congested, compute f such that

\[
\begin{align*}
f &= 2: \\
\min(8, 2\times3) &= 6 \\
\min(6, 2\times1) &= 2 \\
\min(2, 2\times1) &= 2
\end{align*}
\]
Fluid Flow

- Flows can be served one bit at a time
- WFQ can be implemented using bit-by-bit weighted round robin
 - During each round from each flow that has data to send, send a number of bits equal to the flow’s weight
Fluid Flow Example

- Orange flow has packets backlogged between time 0 and 10
- Other flows have packets continuously backlogged
- All packets have the same size
Packet-Based Implementation

- Packet (Real) system: packet transmission cannot be preempted. Why?

- Solution: serve packets in the order in which they would have finished being transmitted in the fluid flow system
Select the first packet that finishes in the fluid flow system.
Quality of Service (QoS)

- So far, we have assumed all traffic is equal and provided best effort delivery
 - Perhaps with enforcement to throttle non-responsive senders

- Not always best model. Why?
 - Application demands
 » I want low-delay low-loss for phone service
 » For backup, I just need bandwidth… don’t care about delay
 - Market differentiation
 » I want to sell better service for more money
 - Bandwidth management
 » Don’t let BitTorrent eat up all UCSD bandwidth
Multimedia Applications

- Basic idea
 - Sample signal, packetize, transmit
 - Repeat in reverse at receiver

- Network Requirements (@ given load)
 - Delay
 - Jitter (variation in delay)
 - Packet loss
 - Exact parameters a function of interactivity demands, buffer capacity, retransmission time and loss tolerance
 - However… as a rule they want more
Different Demands

- Utility
- Delay-adaptive
- Elastic
- Hard real-time

Utility vs Bandwidth graphs for different demands.
Packet Classification

- Want to treat some traffic better/worse than others
 - How to identify the more important traffic?
 - How much better do we want to treat it?
 - How do we actually treat it better?

- Router **classifies** based on packet header
 - Aggregates
 - From particular network (IP src address)
 - For particular protocol (e.g., port 80 traffic)
 - Individual network flows
 - 5-tuple (src, dst, src port, dst port, protocol)
 - Special header field that indicates traffic “type”
Service Classes

- **Best-effort**
 - Vanilla IP

- **Differentiated service**
 - Bronze, Silver, Gold, etc… (effectively priorities, up to some amount of bandwidth per time)
 - E.g., best service up to 10Mbps, then best effort

- **Predicted service (soft real-time)**
 - Network guarantees good performance on average
 - Application promises only send as fast as negotiated

- **Guaranteed service (hard real-time)**
 - Network guarantees good performance always
 - Application promises only send as fast as negotiated
How to Specify?

- Kind of service (service class)
- Specify “flowspec” for data flow limits
 - Tspec: describes the flow’s traffic characteristics
 » Average bandwidth + burstiness (contract with ISP)
 - Rspec: describes the service requested from the network (e.g., delay target)
- Interface can be interactive (ask network) or via business interface (ask salesman)
 - Can say no
 - If yes, then use scheduling mechanisms in routers (not FIFO anymore) to deliver
More Complicated Routers

- Data In
- Routing Messages
- Routing
- Signaling
- Admission Control?
- Data Plane
- Forwarding Table
- Dest Lookup
- Classifier
- Per Flow QoS Table
- Scheduler
- QoS Control messages
- Control Plane

CSE 123 – Lecture 24: Scheduling & QoS
Network-wide QoS

- **Integrated services**
 - Motivated by need for end-to-end guarantees
 - On-line negotiation of per-flow requirements
 - End-to-end per-router negotiation of resources
 - Complex

- **Differentiated services**
 - Motivated by economics (multi-tier pricing)
 - No per-flow state
 - Not end-to-end and not guaranteed services
 - Simple
Summary

- Routers manage their own resources
 - Buffer management may entail marking/dropping
 - Scheduling discipline determines outgoing packet order

- Token bucket and RED
 - Mechanisms to control traffic flowing through routers

- Networks can provide quality of service
 - Combines per-router traffic policing with network signaling
 - IntServ and DiffServ are contrasting approaches
For next time…

- Read Ch. 2.7 in P&D
- No class Monday
- HW 4 due on Wednesday
- Wrap up Project 2
 - Don’t forget about the Espresso Prize