CSE 105
Theory of Computation

Professor Jeanne Ferrante
Today’s Agenda

• Final Review

Reminders and announcements:
• Final Exam Review: Tonight, starts 7 pm, Peterson 108
• Final Exam: Sat Jun 4, 11:30 am - 2:29 pm in WLH 2001
• BRING
 • Your ID
 • Your Seat Assignment
 • One 5 in by 8 in index card of notes (both sides)
Test Tips

• Get a good night’s sleep night before
• Practice writing out solutions beforehand

At the Test
• Remember to breathe!
• Read through all the problems before starting, decide which are harder
• Recommended strategy:
 Start harder problem but don’t get stuck there!
 Only spend a few minutes
 Jump to easier
 Go back to harder ...
Map we used for the quarter

What is theory of Computation?
What is “Theory of Computation”?

• **What is Computation?**

 • **Computational Models**, successively more powerful, leading up to general model, the Turing Machine

 • **Computability**: What languages are recognized by each model? What problems (suitably encoded) can be solved by each model? Which cannot be?

 • **Complexity**: How easy or hard is a given language to recognize, or problem to solve?

 • Decidability, Time Complexity, P, NP
MODEL:
Understand, Design, Description of Language

1. Finite Automata & Regular Expressions
2. Push Down Automata & CFG’s
3. Turing Machines (May Not Always Halt)
 • If Always Halt

LANGUAGE CLASS:
Closure Properties, Language Problems, NOT in class

1. Regular Languages
 Show NOT in Class: Pumping Lemma
2. Context-Free Languages
3. Turing Recognizable Languages (TR)
 • Decidable
 • P
 • NP
4. Undecidable, Non TR
 (Diagonalization, reduction)
Problem: Show L is regular.

Solution:

1. Construct a
 • DFA, or
 • NFA, or
 • Regular Expression

2. Show that it is correct for L:
 $$w \in L \iff w \text{ is accepted by ...}$$

Ex 1: $L = \{w \in \{0,1\}^* \mid w \text{ has an odd number of 1's}\}$

DFA:

Reg Exp:
Ex 2. \(L = \{w \mid w \text{ has an odd number of } 1\text{'s OR starts with a } 0\} \)

- NFA:

- Regular Expression:

Qu: To Show a language \(A \) is **Not** Regular, we can:
A. Show there is a CFG generating \(A \)
B. Use the Pumping Lemma for Regular Languages
C. Show \(A \) is undecidable
D. None or more than one of the above
To show a language L is:

Decidable:
1. *Show that there is a TM D that always halts and accepts exactly L
2. Show that you can reduce L to a decidable problem
3. *Use closure properties

Recognizable:
1. *Show that there is a TM R that accepts exactly L
2. Show that you can reduce L to a recognizable problem
3. *Use closure properties

* Most frequently used

Not Decidable:
1. Use Diagonalization or
2. *Use Reduction (e.g. from A_{TM} to L, alternatively via reduction of other undecidable language to L)

Not Recognizable:
1. If L is undecidable, and show its complement is recognizable, then L not recognizable. (Th 4.22)
Many Undecidability proofs follow a common pattern....

- Always a proof by contradiction
 - Assume T is decidable by TM M_T
 - T checks for condition P, and always halts with accept or reject
- Use M_T to construct TM $M_{ATM}(M, w)$ to decide A_{TM}

- Within M_{ATM}, construct special TM X such that
 1. If M accepts w, then $L(X)$ has property P
 2. If M does not accept w, then $L(X)$ has property not P

Run M_T with input $<X>$ to distinguish between P or not P for $L(X)$, to decide if M accepts w

- Show that M_{ATM} decides A_{TM} for the contradiction

Note: sometimes easier to build X so that X has P iff w not in $L(M)$
Show $T = \{ <M> \mid M \text{ is a TM, and } |L(M)| = 1 \}$ is undecidable

• Proof by contradiction: (A_{TM} reduces to T)
• Assume T is decidable by TM M_T. Use M_T to construct TM D_{ATM} that decides A_{TM}.
• $D_{ATM} =$ “On input $<M,w>$:
 1. Construct TM $Z =$ “ On input x:
 a) If $x \neq 105$ then reject.
 b) If $x = 105$, Run M on input w. If it accepts, accept. If it rejects, reject.”
 2. Run M_T on $<Z>$. If it accepts then accept, otherwise reject.
 • Correctness:
• But A_{TM} is undecidable, a contradiction. So the assumption is false and T is undecidable. QED.

What is $L(Z)$?
A. Empty set
B. $\{105\}$
C. $\{105\}$ if M accepts w, and Empty set if M does not accept w
D. Empty set if M accepts w, and $\{105\}$ if M does not accept $w
TH. 5.2: \(E_{TM} = \{<M> \mid M \text{ is a TM and } L(M) = \emptyset\} \) is undecidable

We show \(A_{TM} \) reduces to \(E_{TM} \)

Proof: Assume \(E_{TM} \) is decidable, with TM \(R \). We show then that \(A_{TM} \) is decidable, a contradiction.

- Using \(R \), we construct a TM \(M_{ATM} \) that decides \(A_{TM} \):

\[
M_{ATM} = \begin{cases}
\text{Correctness: } M_{ATM} \text{ is a decider since } R \text{ is, and accepts } <M,w> \text{ iff } L(X) \text{ is nonempty iff } M \text{ accepts } w. \\
\text{But } A_{TM} \text{ is undecidable, a contradiction. So the assumption is false and } E_{TM} \text{ is undecidable.}
\end{cases}
\]

What is \(L(X) \) if \(M \) accepts \(w \)?

A. \(\{w\} \)
B. \(w \)
C. \(\emptyset \)
D. None above
Countable and Uncountable

Countable
- Show there is a 1-1 correspondence from \(\mathbb{N} \)

Examples
- Any language over \(\Sigma \)
- Even numbers
- Integers
- Rational numbers
- All regular languages over \(\Sigma \)

Uncountable
- Diagonalization (proof by contradiction)

Examples
- Set of all subsets of \(\Sigma^* \)
- Real numbers between 0 and 1
- Real Numbers
- Set of all infinite binary sequences
If L is (in a language class) then show L’ is also in the same (language class):

Given: L is in (Regular languages or CFL or Decidable or Recognizable…)
so it has a (DFA/NFA or CFG or TM decider or TM recognizer…)

Want to show: L’ has a (DFA/NFA or CFG or TM decider or TM recognizer)

Proof Method: Direct Construction OR Use Closure Properties of the Class
Closure Properties of Language Classes

The Regular Languages are closed under:
- Union
- Intersection
- Complement
- Star
- Concatenation

The CF Languages are closed under:
- Union
- Intersection
- Complement
- Star
- Concatenation

The Decidable Languages are closed under:
- Union
- Intersection
- Complement
- Star
- Concatenation

The Turing-Recognizable Languages are closed under:
- Union
- Intersection
- Complement
- Star
- Concatenation
Tips for Writing Closure Proofs

• A closure proof provides an answer to the question, "If I have a class of languages, and do [blah] to a language in it, is the new language still in the class?"

• **GIVEN:** Write down what is known and give names to each of them and their component parts so you can use them later.

• **WANT TO SHOW:**
 • Announce what you will prove and your plan for it..

• **CONSTRUCTION:**
 • Let $M' = ...$, where ...
 • The construction will depend on the problem.
 • Though *not part of the proof*, a description in English of what you are trying to do is often useful.

• **CORRECTNESS:**
 • Here you prove that you construction actually works.

• **CONCLUSION:**
 • Finish by stating what you have proved.
Prove that the class of Turing-recognizable languages is closed under Concatenation

• Given: Two Turing-recognizable languages A and B, and TM’s that recognize them, M_A and M_B.
• Want to Show: There is a TM M that recognizes $A \cdot B$.
• Construction:

 $M =$ “On input w:

 1. Nondeterministically split w into x and y, $w = xy$, and for each such split:

 a. Simulate running M_A on input x

 a. If it rejects, reject. If it accepts, go to step b:

 b. Simulate running M_B on input y

 a. If it accepts, accept. If it rejects, reject.”

• Correctness: w is in $A \cdot B$ if and only if M accepts w:

 If w is in $A \cdot B$ then $w = xy$ where x is in A and y is in B. When we run M_A on x and M_B on y both halt and accept, so M accepts w.

 If w is not in $A \cdot B$ then for any split of $w = xy$, either x is not in A or y is not in B. So either x is not accepted by M_A or y is not accepted by M_B, and either one (or both) will reject or fail to halt on their input. Then M will either reject w or fail to halt on w, so M does not accept w.

• Conclusion: We have constructed a TM that recognizes $A \cdot B$, therefore $A \cdot B$ is Turing-recognizable, and Turing-recognizable languages are closed under concatenation. QED.
Show that the decidable languages are closed under the property of Reversal, that is, if L is decidable, then $L^R = \{w \mid w^r \text{ is in } L\}$ is decidable.

Proof:

Given: L is decidable, so there is a TM D that decides L.

Want to show: There is a TM R that decides L^R.

We give a high-level description of R:

$R =$ “On input w:
Show that the CFL’s are closed under the property of Reversal, that is if \(L \) is CF, then \(L^R = \{w \mid w^r \text{ is in } L\} \) is CF.

Example: \(S \rightarrow 0 \ S \ 1 \ | \ \varepsilon \)

\(L(S) = \)

How can we get the reverse language?

•Proof: Let \(L \) be a CFL with CFG \(G = (V, \Sigma, R, S) \). We construct a CFG \(G^R = (V, \Sigma, R', S) \). for \(L^R \) as follows:

•Correctness:
• Show that the regular languages over \{0,1,2\} are closed under the operation Mirror, where

\[\text{Mirror}(L) = \{ w \mid w \text{ is obtained from some } w' \text{ in } L \text{ by changing each 0 to 2 and 2 to 0} \} \]

• Proof: Suppose L is regular with DFA \(D = (Q, \Sigma, \delta, q_0, F) \)
Which is the best description of the language of the given PDA?

A. \{ w \mid \text{number of b's in } w \geq \text{number of a's in } w\}

B. \{ w \mid w = a^n b^{n+1} \text{ for some } n \geq 0\}

C. \{ w \mid w = a^n b^{n+2} \text{ for some } n \geq 0\}

D. \{ w \mid w = a^n b^{2n} \text{ for some } n \geq 0\}

E. \{ w \mid w = 0a^n b^{2n} 0 \text{ for some } n \geq 0\}
What is the language of this CFG?

S → aSb | bY | Ya
Y → bY | Ya | ε
Pumping Lemma Practice

- Thm. \(L = \{ww_r \mid w_r \text{ is the reverse of } w \text{ in } \{0,1\}^*\} \) is not regular.
- Proof (by contradiction):
- Assume (towards contradiction) that \(L \) is regular. Then the pumping lemma applies to \(L \). Let \(p \) be the pumping length. Choose \(s \) to be the string \(\underline{\qquad} \). The pumping lemma guarantees \(s \) can be divided into parts \(xyz \) s.t. for any \(i \geq 0 \), \(xy^iz \) is in \(L \), and that \(|y| > 0 \) and \(|xy| \leq p \). But if we let \(i = \underline{\qquad} \), we get the string \(XXXX \), which is \textit{not} in \(L \), a contradiction. Therefore the assumption is false, and \(L \) is not regular.
- Q.E.D.

A. \(s = 000000111111, \ i=6 \)
B. \(s = 0^p0^p, \ i=2 \)
C. \(s = 0^p110^p, \ i = 2 \)
D. None or more than one of the above
Running times of decider TM’s

Deterministic

- $f(n) = \text{MAX number of steps with input length } n$
- Transition from q_0 to q_{rej}

Nondeterministic

- $f(n) = \text{MAX number of steps on any branch with input length } n$
- Transition from q_0 to q_{rej}, q_{acc}, q_{acc}
P and NP

P is the class of languages that can be decided in polynomial time on a **deterministic**, single-tape TM

- Contains all realistically solvable problems
- Examples: PATH, Simple arithmetic, CFL’s,…

NP: (Equivalent to) the class of languages that can be decided in polynomial time on a **non-deterministic** single-tape TM

- \(P \subseteq NP \), but we don’t know if \(P = NP \)
- Examples include Travelling Salesperson, HAMPATH, Satisfiability of Boolean Expressions, CLIQUE
- For problems in NP not known to be in P, best deterministic algorithms take exponential time
Computational Language Hierarchy

- Regular
- Context-Free
- Decidable
- P
- NP
- Turing-Recognizable
More Problems (Study guide)

• Design NFA for $C = A \cup B$ over $\{0,1\}$, where $A = \{w \mid |w| \text{ is odd}\}$ and $B = \{w \mid w \text{ starts with } 1 \text{ and } |w| \text{ is even}\}$.

Use no more than 5 states.

Show that $L = \{x \in \{0,1\}^* \mid \text{for all } k = 0,1,...,|x|, \text{ the first } k \text{ symbols of } x \text{ contain at least as many } 0\text{'s as } 1\text{'s}\}$ is not regular.