Today's learning goals

• Define reductions from one problem to another.
• Use reductions to prove undecidability.
• Describe the difference between diagonalization and reduction.
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Recognizable (and not decidable)</th>
<th>Not recognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>??</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>HALT_{TM}</td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL_{DFA} (HW)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization OR reduction
Reduction?

A problem P_1 **reduces to** a problem P_2 if any solution for P_2 can be used to solve P_1.

In other words: using a solution for P_2 as a subroutine gives a solution for P_1.

In our example: we used a solution for HALT_TM to get a solution for A_{TM}. This means that A_{TM} **reduces to** HALT_TM.
Reduction?

A problem P_1 reduces to a problem P_2 if any solution for P_2 can be used to solve P_1.

If P_1 reduces to P_2 and

A. P_1 is decidable, then P_2 is also decidable.
B. P_2 is decidable, then P_1 is also decidable.
C. Both of the above.
D. None of the above.
E. I don't know.
Reduction?

A problem P_1 **reduces to** a problem P_2 if any solution for P_2 can be used to solve P_1.

If P_1 reduces to P_2 and

A. P_1 is undecidable, then P_2 is also undecidable.
B. P_2 is undecidable, then P_1 is also undecidable.
C. Both of the above.
D. None of the above.
E. I don't know.
Reduction?

A problem P_1 reduces to a problem P_2 if any solution for P_2 can be used to solve P_1.

New strategy: to prove that a problem is undecidable, prove that a problem we know to be undecidable reduces to it.
Reminder: HALT_TM is undecidable \textit{(Theorem 5.1)}

Proof (using reductions): We will show that A_{TM} reduces to HALT_TM, and therefore (since A_{TM} is undecidable), HALT_TM must be undecidable.
Reminder: HALT_{TM} is undecidable

Proof *(using reductions)*: We will show that A_{TM} reduces to HALT_{TM}, and therefore (since A_{TM} is undecidable), HALT_{TM} must be undecidable.

How do we show that A_{TM} reduces to HALT_{TM}?

A. Define an algorithm for A_{TM} that uses a subroutine which checks for membership in HALT_{TM}.
B. Define an algorithm for HALT_{TM} that uses a subroutine which checks for membership in A_{TM}.
C. None of the above.
D. I don't know.
Reminder: HALT_{TM} is undecidable

Proof (using reductions): We will show that A_{TM} reduces to HALT_{TM}, and therefore (since A_{TM} is undecidable), HALT_{TM} must be undecidable.

Assume that M_{HALT} is a machine that decides HALT_{TM}.

Goal: Define decider for A_{TM} using M_{HALT} as subroutine.
Reminder: HALT_{TM} is undecidable

Proof (using reductions): We will show that A_{TM} reduces to HALT_{TM}, and therefore (since A_{TM} is undecidable), HALT_{TM} must be undecidable.

Assume that M_{HALT} is a machine that decides HALT_{TM}.

Goal: Define decider for A_{TM} using M_{HALT} as subroutine.

What's the input to an algorithm that decides A_{TM}?

A. w
B. <M>
C. <M,w>
D. <M, <M> >
E. I don't know.
Reminder: HALT_{TM} is undecidable

Proof (using reductions): We will show that A_{TM} reduces to HALT_{TM}, and therefore (since A_{TM} is undecidable), HALT_{TM} must be undecidable.

Assume that M_{HALT} is a machine that decides HALT_{TM}.

Goal: Define decider for A_{TM} using M_{HALT} as subroutine.

"On input $<M,w>$ … Want to accept if w in $L(M)$, reject o.w."
Reminder: HALT_TM is undecidable

Proof (using reductions): We will show that A_{TM} reduces to HALT_TM, and therefore (since A_{TM} is undecidable), HALT_TM must be undecidable.

Assume that M_{HALT} is a machine that decides HALT_TM.

Goal: Define decider for A_{TM} using M_{HALT} as subroutine.

"On input $<M,w>$ Want to accept if w in $L(M)$, reject o.w.
1. Run M_{HALT} on $<M,w>$. If rejects, reject.
2. If accepts, run M on w.
3. If accepts, accept; if rejects, reject."
Reminder: \(\text{HALT}_{\text{TM}} \) is undecidable

Proof (using reductions): We will show that \(\text{A}_{\text{TM}} \) reduces to \(\text{HALT}_{\text{TM}} \), and therefore (since \(\text{A}_{\text{TM}} \) is undecidable), \(\text{HALT}_{\text{TM}} \) must be undecidable.

Assume that \(\text{M}_{\text{HALT}} \) is a machine that decides \(\text{HALT}_{\text{TM}} \).

Goal: Define decider for \(\text{A}_{\text{TM}} \) using \(\text{M}_{\text{HALT}} \) as subroutine.

"On input \(\langle M,w \rangle \) [want to accept if \(w \) in \(L(M) \), reject o.w.]
1. Run \(\text{M}_{\text{HALT}} \) on \(\langle M,w \rangle \). If rejects, reject.
2. If accepts, run \(M \) on \(w \).
3. If accepts, accept; if rejects, reject."

Claim: this is a decider for \(\text{M}_{\text{ATM}} \) so \(\text{A}_{\text{TM}} \) reduces to \(\text{HALT}_{\text{TM}} \).
Claim: E_{TM} is undecidable. \((Theorem \ 5.2) \)

\[
E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is empty} \}
\]
i.e. want to recognize codes of TMs that always reject / loop

- **Proof by reduction?**

To use proof by reduction to prove that E_{TM} is undecidable, we must reduce an undecidable set to E_{TM}
Claim: E_{TM} is undecidable.

- **Proof by reduction**
 - **Goal:** show that A_{TM} reduces to E_{TM}.
 - i.e. Build an algorithm that uses a decider for E_{TM} as a subroutine and that decides A_{TM}
 - **Assume:** have a TM, R, that decides E_{TM}
 - **Build:** new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
Claim: E_{TM} is undecidable.

- **Proof by reduction**
 - **Goal:** show that A_{TM} reduces to E_{TM}.
 - i.e. Build an algorithm **that uses a decider for E_{TM} as a subroutine** and that decides A_{TM}.
 - **Assume:** have a TM, R, that decides E_{TM}.
 - **Build:** new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.

What's the input to R?

A. w
B. $<M>$
C. $<M,w>$
D. $<M, <M> >$
E. I don't know.
Claim: \(E_{\text{TM}} \) is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, \(R \), that decides \(E_{\text{TM}} \)
 - Build: new TM, \(M_{\text{ATM}} \), that decides \(A_{\text{TM}} \)
 - Always halts
 - Accepts iff input \(<M,w>\) and \(w \) is in \(L(M) \).
 - "On input \(<M,w>\>:
 - Run \(R \) on input \(<M>\). If rejects, reject.
 - If accepts, run \(M \) on input \(w \).
 - If accepts, accept; if reject, reject."
Claim: \(E_{TM} \) is undecidable.

- Proof by reduction…
 - Assume: have a TM, \(R \), that decides \(E_{TM} \).
 - Build: new TM, \(M_{ATM} \), that decides \(A_{TM} \).
 - Always halts
 - Accepts iff input \(<M,w> \) and \(w \) is in \(L(M) \).
 - "On input \(<M,w> \):
 - Run \(R \) on input \(<M> \). If rejects, reject.
 - If accepts, run \(M \) on input \(w \).
 - If accepts, accept; if reject, reject."

Does the machine \(M_{ATM} \) always halt?

A. Yes.
B. No, not if \(L(M) \) is empty.
C. No, not if \(L(M) \) is nonempty.
D. No, not if \(M \) is not a decider.
E. I don't know.
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.

Fixed version

Proof by reduction…
- Assume: have a TM, R, that decides E_{TM}
- Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
- "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.

Claim: E_{TM} is undecidable.
Claim: E_{TM} is undecidable.

- Proof by reduction…
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.

For a given $<M,w>$, what's $L(X)$?
A. $\{w\}$
B. w
C. $\{ x | x \neq w \}$
D. Σ^*
E. The empty set.
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - **Assume:** have a TM, R, that decides E_{TM}
 - **Build:** new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.
 - Run R on $<X>$.
 - If accepts, reject; if rejects; accept."
Claim: E_{TM} is undecidable.

• Proof by reduction…
 • Assume: have a TM, R, that decides E_{TM}
 • Build: new TM, M_{ATM}, that decides A_{TM}
 • Always halts
 • Accepts iff input $<M,w>$ and w is in $L(M)$.
 • "On input $<M,w>$:
 • First, build the TM X which, on input x, ignores x and simulates M on w.
 • Run R on $<X>$.
 • If accepts, reject; if rejects; accept."
 • Correctness: Is M_{ATM} a decider for A_{TM}?
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Undecidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>$HALT_{TM}$</td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td>E_{TM}</td>
</tr>
<tr>
<td>ALL_{DFA} (HW)</td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!
Diagonalization OR reduction
And another … (Theorem 5.3)

REGULAR\textsubscript{TM} = \{ <M> | M is TM and L(M) is regular \}

Claim: REGULAR\textsubscript{TM} is undecidable.

Proof: WTS A\textsubscript{TM} reduces to REGULAR\textsubscript{TM}

Assume R is TM that decides REGULAR\textsubscript{TM}. We will build a decider for A\textsubscript{TM} that calls R as a subroutine.

What should the decider for A\textsubscript{TM} do?
And another … (Theorem 5.3)

Claim: REGULAR_{TM} is undecidable.
Proof: WTS A_{TM} reduces to REGULAR_{TM}
Assume R is TM that decides REGULAR_{TM}. We will build a decider for A_{TM} that calls R as a subroutine.

"On input <M,w>
1. Build machine X such that L(x) is regular iff w is in L(M).
2. Run R on <X>.
3. If R accepts, accept. If R rejects, reject.
.."
How do we build X?

Goal: For fixed parameters M a TM and w a string
- if w in L(M) then L(X) is a regular set
- if w not in L(M) then L(X) is not a regular set

So... we need some example regular and non-regular sets

Regular sets: $\emptyset, L(0^*1^*), \Sigma^*$

Non-regular sets: $\{0^n1^n | n \geq 0\}$
How do we build X?

Goal: For fixed parameters M a TM and w a string

if w in $L(M)$ then $L(X) = \Sigma^*$

if w not in $L(M)$ then $L(X) = \{0^n1^n \mid n \geq 0\}$

Construction: $X = \text{"On input } x:\$

1. ...

2. ...

"
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Undecidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>$HALT_{TM}$</td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td>E_{TM}</td>
</tr>
<tr>
<td>$ALL_{DFA} (HW)$</td>
<td>$REGULAR_{TM}$</td>
</tr>
<tr>
<td></td>
<td>${ <M></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization OR reduction
{ <M> | M is a decider }

A new proof that this language is undecidable…

Can we show that A_{TM} reduces to it?

Let R be a decider for $\{ <M> | M \text{ is a decider} \}$. Build a decider for A_{TM} by: "On input $<M, w>$

1.
2.
3. "
General approach

To prove that \{ <M> | M is a TM and L(M) has property P \} is undecidable

• Assume \textbf{towards a contradiction} that R is a decider for \{<M> | M is a TM and L(M) has P\}.
• Build decider for \(A_{TM} \) by: "On input <M,w>
 1. Construct a new TM X such that X has P iff w in L(M)
 2. Run R on <X>: if accepts, accept; if rejects, reject."

Note: sometimes easier to build X so that X has P iff w not in L(M)
More examples

• \{ <M> \mid M \text{ is a TM and } M \text{ accepts } w \text{ iff } M \text{ accepts } w^R \}\\
• \text{INF}_{TM} = \{ <M> \mid M \text{ is TM and } L(M) \text{ is infinite} \}\\
• \text{EQ}_{TM} = \{ <M_1, M_2> \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}