Today's learning goals

- Define reductions from one problem to another.
- Use reductions to prove undecidability.
- Describe the difference between diagonalization and reduction.
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Recognizable (and not decidable)</th>
<th>Not recognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>??</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>$HALT_{TM}$</td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL_{DFA} (HW)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization OR reduction
Reduction?

A problem P_1 **reduces to** a problem P_2 if any solution for P_2 can be used to solve P_1.

In other words: using a solution for P_2 as a subroutine gives a solution for P_1.

In our example: we used a solution for HALT_{TM} to get a solution for A_{TM}. This means that A_{TM} **reduces to** HALT_{TM}.
Reduction?

A problem P_1 **reduces to** a problem P_2 if any solution for P_2 can be used to solve P_1.

If P_1 reduces to P_2 and

A. P_1 is decidable, then P_2 is also decidable.
B. P_2 is decidable, then P_1 is also decidable.
C. Both of the above.
D. None of the above.
E. I don't know.
Reduction?

A problem P_1 reduces to a problem P_2 if any solution for P_2 can be used to solve P_1.

If P_1 reduces to P_2 and

A. P_1 is undecidable, then P_2 is also undecidable.
B. P_2 is undecidable, then P_1 is also undecidable.
C. Both of the above.
D. None of the above.
E. I don't know.
Reduction?

A problem P_1 reduces to a problem P_2 if any solution for P_2 can be used to solve P_1.

New strategy: to prove that a problem is undecidable, prove that a problem we know to be undecidable reduces to it.
Reminder: HALT_{TM} is undecidable \hfill (Theorem 5.1)

Proof (using reductions): We will show that A_{TM} reduces to HALT_{TM}, and therefore (since A_{TM} is undecidable), HALT_{TM} must be undecidable.
Reminder: HALT^TM is undecidable

Proof (using reductions): We will show that A^TM reduces to HALT^TM, and therefore (since A^TM is undecidable), HALT^TM must be undecidable.

How do we show that A^TM reduces to HALT^TM?

A. Define an algorithm for A^TM that uses a subroutine which checks for membership in HALT^TM.
B. Define an algorithm for HALT^TM that uses a subroutine which checks for membership in A^TM.
C. None of the above.
D. I don't know.
Reminder: \(\text{HALT}_\text{TM} \) is undecidable

Proof (using reductions): We will show that \(A_{\text{TM}} \) reduces to \(\text{HALT}_\text{TM} \), and therefore (since \(A_{\text{TM}} \) is undecidable), \(\text{HALT}_\text{TM} \) must be undecidable.

Assume that \(M_{\text{HALT}} \) is a machine that decides \(\text{HALT}_\text{TM} \).

Goal: Define decider for \(A_{\text{TM}} \) using \(M_{\text{HALT}} \) as subroutine.
Reminder: HALT

Proof (using reductions): We will show that A_{TM} reduces to $HALT_{TM}$, and therefore (since A_{TM} is undecidable), $HALT_{TM}$ must be undecidable.

Assume that M_{HALT} is a machine that decides $HALT_{TM}$.

Goal: Define decider for A_{TM} using M_{HALT} as subroutine.

What's the input to an algorithm that decides A_{TM}?

A. w
B. $<M>$
C. $<M,w>$
D. $<M, <M> >$
E. I don't know.
Reminder: HALT_{TM} is undecidable

Proof (using reductions): We will show that A_{TM} reduces to HALT_{TM}, and therefore (since A_{TM} is undecidable), HALT_{TM} must be undecidable.

Assume that M_{HALT} is a machine that decides HALT_{TM}.

Goal: Define decider for A_{TM} using M_{HALT} as subroutine.

"On input $<M,w>$ … Want to accept if w in $L(M)$, reject o.w."
Reminder: HALT_{TM} is undecidable

Proof (using reductions): We will show that A_{TM} reduces to HALT_{TM}, and therefore (since A_{TM} is undecidable), HALT_{TM} must be undecidable.

Assume that M_{HALT} is a machine that decides HALT_{TM}.

Goal: Define decider for A_{TM} using M_{HALT} as subroutine.

"On input $<M,w>$ Want to accept if w in $L(M)$, reject o.w.
1. Run M_{HALT} on $<M,w>$. If rejects, reject.
2. If accepts, run M on w.
3. If accepts, accept; if rejects, reject."
Reminder: \(\text{HALT}^{\text{TM}}\) is undecidable

Proof (using reductions): We will show that \(A^{\text{TM}}\) reduces to \(\text{HALT}^{\text{TM}}\), and therefore (since \(A^{\text{TM}}\) is undecidable), \(\text{HALT}^{\text{TM}}\) must be undecidable.

Assume that \(M_{\text{HALT}}\) is a machine that decides \(\text{HALT}^{\text{TM}}\).

Goal: Define decider for \(A^{\text{TM}}\) using \(M_{\text{HALT}}\) as subroutine.

"On input \(<M,w>\)
Want to accept if \(w\) in \(L(M)\), reject o.w.

1. Run \(M_{\text{HALT}}\) on \(<M,w>\). If rejects, reject.
2. If accepts, run \(M\) on \(w\).
3. If accepts, accept; if rejects, reject."

Claim: this is a decider for \(M_{\text{ATM}}\) so \(A^{\text{TM}}\) reduces to \(\text{HALT}^{\text{TM}}\).
Claim: E_{TM} is undecidable. \hspace{1cm} (Theorem 5.2)

$E_{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is empty} \}$

i.e. want to recognize codes of TMs that always reject / loop

- **Proof by reduction?**

To use proof by reduction to prove that E_{TM} is undecidable, we must reduce an undecidable set to E_{TM}
Claim: E_{TM} is undecidable.

- **Proof by reduction**
 - **Goal:** show that A_{TM} reduces to E_{TM}.
 - i.e. Build an algorithm that uses a decider for E_{TM} as a subroutine and that decides A_{TM}.
 - **Assume:** have a TM, R, that decides E_{TM}.
 - **Build:** new TM, M_{ATM}, that decides A_{TM}.
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.

Claim: E_{TM} is undecidable.

- **Proof by reduction**
 - **Goal**: show that A_{TM} reduces to E_{TM}.
 - i.e. Build an algorithm that uses a decider for E_{TM} as a subroutine and that decides A_{TM}
 - **Assume**: have a TM, R, that decides E_{TM}
 - **Build**: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.

What's the input to R?

A. w
B. $<M>$
C. $<M,w>$
D. $<M, <M> >$
E. I don't know.
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.

 "On input $<M,w>$:
 - Run R on input $<M>$. If rejects, reject.
 - If accepts, run M on input w.
 - If accepts, accept; if reject, reject."
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}.
 - Build: new TM, M_{ATM}, that decides A_{TM}.
 - **Always halts**
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - Run R on input $<M>$. If rejects, reject.
 - If accepts, run M on input w.
 - If accepts, accept; if reject, reject."

Does the machine M_{ATM} always halt?

A. Yes.
B. No, not if $L(M)$ is empty.
C. No, not if $L(M)$ is nonempty.
D. No, not if M is not a decider.
E. I don't know.
Claim: E_{TM} is undecidable.

• Proof by reduction…
 • Assume: have a TM, R, that decides E_{TM}
 • Build: new TM, M_{ATM}, that decides A_{TM}
 • Always halts
 • Accepts iff input $<M,w>$ and w is in $L(M)$.
 • "On input $<M,w>$:
 • First, build the TM X which, on input x, ignores x and simulates M on w."

Fixed version
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M, w>$ and w is in $L(M)$.
 - "On input $<M, w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w."

For a given $<M, w>$, what's $L(X)$?
A. $\{w\}$
B. w
C. $\{ x \mid x \neq w \}$
D. Σ^*
E. The empty set.
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.
 - Run R on $<X>$.
 - If accepts, reject; if rejects; accept."
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.
 - Run R on $<X>$.
 - If accepts, reject; if rejects; accept."
 - **Correctness:** Is M_{ATM} a decider for A_{TM}?
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Undecidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>$HALT_{TM}$</td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td>E_{TM}</td>
</tr>
<tr>
<td>ALL_{DFA} (HW)</td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization OR reduction
Claim: \(\text{REGULAR}_\text{TM} \) is undecidable.

Proof: WTS \(A_\text{TM} \) reduces to \(\text{REGULAR}_\text{TM} \)

Assume \(R \) is TM that decides \(\text{REGULAR}_\text{TM} \). We will build a decider for \(A_\text{TM} \) that calls \(R \) as a subroutine.

What should the decider for \(A_\text{TM} \) do?
Claim: REGULAR$_{TM}$ is undecidable.

Proof: WTS A_{TM} reduces to REGULAR$_{TM}$

Assume R is TM that decides REGULAR$_{TM}$. We will build a decider for A_{TM} that calls R as a subroutine.

"On input $<M,w>$
1. Build machine X such that $L(x)$ is regular iff w is in $L(M)$.
2. Run R on $<X>$.
3. If R accepts, accept. If R rejects, reject.
.."
How do we build X?

Goal: For fixed parameters M a TM and w a string
- if w in $L(M)$ then $L(X)$ is a regular set
- if w not in $L(M)$ then $L(X)$ is not a regular set

So… we need some example regular and non-regular sets

Regular sets: \emptyset, $L(0^*1^*)$, Σ^*

Non-regular sets: $\{0^n1^n \mid n \geq 0\}$
How do we build X?

Goal: For fixed parameters M a TM and w a string
if w in $L(M)$ then $L(X) = \Sigma^*$
if w not in $L(M)$ then $L(X) = \{0^n1^n \mid n \geq 0 \}$

Construction: $X = "On input x:
1. ...
2. ...
"$
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Undecidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>$HALT_{TM}$</td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td>E_{TM}</td>
</tr>
<tr>
<td>ALL_{DFA} (HW)</td>
<td>$REGULAR_{TM}$</td>
</tr>
<tr>
<td>{ $<M>$</td>
<td>M is a decider } (HW)</td>
</tr>
</tbody>
</table>
{ <M> | M is a decider }

A new proof that this language is undecidable...

Can we show that A_{TM} reduces to it?

Let R be a decider for { <M> | M is a decider }. Build a decider for A_{TM} by: "On input <M,w>

1.
2.
3. "
General approach

To prove that \{<M>| M is a TM and L(M) has property P\} is undecidable

- Assume towards a contradiction that R is a decider for \{<M>| M is a TM and L(M) has P\}.
- Build decider for \text{A_{TM}} by: "On input <M,w>

1. Construct a new TM X such that X has P iff w in L(M)
2. Run R on <X>: if accepts, accept; if rejects, reject."

Note: sometimes easier to build X so that X has P iff w not in L(M)
More examples

• \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ accepts } w \text{ iff } M \text{ accepts } w^R \}\}
• \text{INF}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is TM and } L(M) \text{ is infinite} \}
• \text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}\}