CSE 105
THEORY OF COMPUTATION

Spring 2016

http://cseweb.ucsd.edu/classes/sp16/cse105-ab/
Today's learning goals

- Use counting arguments to prove the existence of unrecognizable (undecidable) languages.
- Determine and prove whether sets are countable.
- Use diagonalization in a proof of uncountability.
- Use diagonalization in a proof of undecidability.
- Define reductions from one problem to another.
- Use reductions to prove undecidability.
- Describe the difference between diagonalization and reduction.
Recall $A_{DFA} = \{<B,w> | B \text{ is a DFA and } w \text{ is in } L(B) \}$

$A_{TM} = \{<M,w> | M \text{ is a TM and } w \text{ is in } L(M) \}$

What is A_{TM}?
A. A Turing machine whose input is codes of TMs and strings.
B. A set of pairs of TMs and strings.
C. A set of strings that encode TMs and strings.
D. Not well defined.
E. I don't know.
Define the TM $N = \text{"On input } <M,w>\text{:}\
1. \text{Simulate } M \text{ on } w.\
2. \text{If } M \text{ accepts, accept. If } M \text{ rejects, reject.}
Define the TM $N = \text{"On input } <M,w>:\"'}$

1. Simulate M on w.
2. If M accepts, accept. If M rejects, reject.

What is $L(N)$?

A. $A_{TM} = \{<M,w> | w \in L(M) \}$
B. Some superset of A_{TM}
C. $\{<M,w> | M \text{ is a TM and } w \text{ is a string}\}$
D. I don't know.
Define the TM $N = "\text{On input } <M,w>:}\n1. \text{Simulate } M \text{ on } w.\n2. \text{If } M \text{ accepts, accept. If } M \text{ rejects, reject.}"

Which statement is true?
A. N decides A_{TM}
B. N recognizes A_{TM}
C. N always halts
D. I don't know.
Define the TM $N = \text{"On input } <M,w>:\n1. \text{ Simulate } M \text{ on } w.\n2. \text{ If } M \text{ accepts, accept. If } M \text{ rejects, reject.}"$

Conclude: A_{TM} is Turing-recognizable.

Is it decidable?
Diagonalization proof: A_{TM} not decidable

Sipser 4.11

Assume, towards a contradiction, that it is.

I.e. let M_{ATM} be a Turing machine such that for every TM M and every string w,

- Computation of M_{ATM} on $<M,w>$ halts and accepts if w is in $L(M)$.
- Computation of M_{ATM} on $<M,w>$ halts and rejects if w is not in $L(M)$.
Diagonalization proof: A_{TM} not decidable \textit{Sipser} 4.11

Assume, towards a contradiction, that it is.

I.e. let M_{ATM} be a Turing machine such that for every TM M and every string w,

- Computation of M_{ATM} on $<M,w>$ halts and accepts if w is in $L(M)$.
- Computation of M_{ATM} on $<M,w>$ halts and rejects if w is not in $L(M)$.

If X is TM with $L(X) = \{ w \mid w \text{ starts with } 0 \}$ and X loops on all strings that are not in $L(X)$, what is result of the computation of M_{ATM} on $<X, 11>$?

A. M_{ATM} halts and accepts.
B. M_{ATM} halts and rejects.
C. M_{ATM} loops.
D. I don't know.
Diagonalization proof: \(A_{TM} \) not decidable

Sipser 4.11

The set of all strings is countable, so list it.

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_3)</th>
<th>(M_4)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_1)</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
</tr>
<tr>
<td>(W_2)</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
</tr>
<tr>
<td>(W_3)</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
</tr>
<tr>
<td>(W_4)</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
</tr>
<tr>
<td>(W_5)</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
<td>(\text{??})</td>
</tr>
</tbody>
</table>

\(M_{ATM} \): \(M_{ATM} \) on \(<M,w> \) halts and accepts iff \(w \) is in \(L(M) \).
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Idea: Use this machine to build a decider that can’t exist.

Define the TM D = "On input $\langle M \rangle$:
1. Run M_{ATM} on $\langle M, \langle M \rangle \rangle$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D =$ "On input $<M>$:
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Is D a decider?
A. Yes: it's a TM that always halts.
B. No: it's a well-defined TM but may loop.
C. No: it's not even a well-defined TM.
D. I don't know.
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D = \text{"On input } <M>:\text{"}$

1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept.

If M_0 is a TM with $L(M_0) = \emptyset$, what is result of computation of D with input $<M_0>$?

A. Halt and accept.
B. Halt and reject.
C. Loop.
D. I don't know.
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D = "On input <M>:"
1. Run M_{ATM} on $<M, <M>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept.

If M_1 is a TM with $L(M_1) = \Sigma^*$, what is result of computation of D with input $<M_1>$?

A. Halt and accept.
B. Halt and reject.
C. Loop.
D. I don't know.
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{ATM} decides A_{TM}.

Define the TM $D = \text{"On input } <M>:\n
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Consider running D on input $<D>$. Because D is a decider:

- either computation halts and accepts …
- or computation halts and rejects …
Decidable

<table>
<thead>
<tr>
<th>Recognizable (and not decidable)</th>
<th>Not recognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{DFA})</td>
<td>(A_{TM})</td>
</tr>
<tr>
<td>(E_{DFA})</td>
<td></td>
</tr>
<tr>
<td>(EQ_{DFA})</td>
<td></td>
</tr>
<tr>
<td>(ALL_{DFA}) (HW)</td>
<td></td>
</tr>
</tbody>
</table>
Is there an unrecognizable set?

• Unsatisfying answer:
 • "Yes, because of counting arguments"

• How do we prove that a set is not Turing-recognizable?

Later… First, let's get more comfortable with undecidability
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Recognizable (and not decidable)</th>
<th>Not recognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>??</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ALL_{DFA} \ (HW)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization
Do we have to diagonalize?

- *Turning subroutines on their head …

\[\text{HALT}_{\text{TM}} = \{ <M,w> \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

\[A_{\text{TM}} = \{ <M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]
Do we have to diagonalize?

- **Turning subroutines on their head …**

\[\text{HALT} = \{ <M,w> \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

\[\text{A} = \{ <M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]

Claim: \(\text{HALT} \) is undecidable.

How is \(\text{HALT} \) related to \(\text{A} \) ?

A. They're the same set.
B. One is a subset of the other.
C. They have the same type of elements but no other relation.
D. I don't know.
Claim: HALT_{TM} is undecidable.

- Proof by contradiction …

Assume towards the contrary that HALT_{TM} is decided by some TM
Claim: HALT_{TM} is undecidable.

- Proof by contradiction ...

- Assume we have a machine R that \textit{decides} HALT_{TM}
- Build an algorithm \textit{that uses R as a subroutine} that decides A_{TM}
- This is impossible!
Claim: HALT_{TM} is undecidable.

- Proof: Assume, towards a contradiction, that HALT_{TM} is decidable and the TM R decides it. Construct a TM M_{ATM} by: "On input $<M,w>$"
 1. Run R on input $<M,w>$.
 2. If R rejects, then reject; else, run M on w.
 a. If this computation accepts, accept.
 b. If this computation rejects, reject."

Which of the machines in this proof are deciders?

A. All of them: R, M_{ATM}, M
B. Definitely R and M_{ATM}; M may or may not be.
C. Definitely R, M_{ATM}, and M may or may not be.
D. None of them has to be.
E. I don't know.
Claim: HALT_{TM} is undecidable.

- Proof: Assume, towards a contradiction, that HALT_{TM} is decidable and the TM R decides it. Construct a TM M_{ATM} by: "On input $<M,w>$"
 1. Run R on input $<M,w>$.
 2. If R rejects, then reject; else, run M on w.
 a. If this computation accepts, accept.
 b. If this computation rejects, reject."

Lemma: M_{ATM} decides A_{TM}. (Proof of correctness of construction.)

Therefore, A_{TM} is decidable, a contradiction with our earlier work.
Scooping the Loop Snooper
A proof that the Halting Problem is undecidable
Geoffrey K. Pullum
(http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html)

No general procedure for bug checks will do.
Now, I won't just assert that, I'll prove it to you.
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and P gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behavior occurs.

If there will be no looping, then P prints out ‘Good.’
That means work on this input will halt, as it should.
But if it detects an unstoppable loop,
then P reports ‘Bad!’ — which means you’re in the soup.

Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.

Here’s the trick that I’ll use — and it’s simple to do.
I’ll define a procedure, which I will call Q,
that will use P’s predictions of halting success
to stir up a terrible logical mess.

For a specified program, say A, one supplies,
the first step of this program called Q I devise
is to find out from P what’s the right thing to say
of the looping behavior of A run on A.

If P’s answer is ‘Bad!’, Q will suddenly stop.
But otherwise, Q will go back to the top,
and start off again, looping endlessly back,
till the universe dies and turns frozen and black.

And this program called Q wouldn’t stay on the shelf;
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do?
What’s the looping behavior of Q run on Q?

If P warns of infinite loops, Q will quit;

Yet P is supposed to speak truly of it!
And if Q’s going to quit, then P should say ‘Good.’
Which makes Q start to loop! (P denied that it would.)

No matter how P might perform, Q will scoop it:
Q uses P’s output to make P look stupid.
Whatever P says, it cannot predict Q:
P is right when it’s wrong, and is false when it’s true!

I’ve created a paradox, neat as can be —
and simply by using your putative P.
When you posited P you stepped into a snare;
Your assumption has led you right into my lair.

So where can this argument possibly go?
I don’t have to tell you; I’m sure you must know.
A reductio: There cannot possibly be
a procedure that acts like the mythical P.

You can never find general mechanical means
for predicting the acts of computing machines;
it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Recognizable (and not decidable)</th>
<th>Not recognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>??</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>HALT_{TM}</td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{ALL}_{DFA} (HW)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization OR reduction
Reduction?

A problem P_1 reduces to a problem P_2 if any solution for P_2 can be used to solve P_1.

In other words: using a solution for P_2 as a subroutine gives a solution for P_1.

In our example: we used a solution for HALT_{TM} to get a solution for A_{TM}. This means that A_{TM} reduces to HALT_{TM}.
Reduction?

A problem P_1 reduces to a problem P_2 if any solution for P_2 can be used to solve P_1.

If P_1 reduces to P_2 and

A. P_1 is decidable, then P_2 is also decidable.
B. P_2 is decidable, then P_1 is also decidable.
C. Both of the above.
D. None of the above.
E. I don't know.
Reduction?

A problem P_1 **reduces to** a problem P_2 if any solution for P_2 can be used to solve P_1.

If P_1 reduces to P_2 and

A. P_1 is undecidable, then P_2 is also undecidable.
B. P_2 is undecidable, then P_1 is also undecidable.
C. Both of the above.
D. None of the above.
E. I don't know.
Reduction?

A problem P_1 reduces to a problem P_2 if any solution for P_2 can be used to solve P_1.

New strategy: to prove that a problem is undecidable, prove that a problem we know to be undecidable reduces to it.
Claim: \(E_{\text{TM}} \) is undecidable.

\[
E_{\text{TM}} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is empty} \}
\]
i.e. want to recognize codes of TMs that always reject / loop

- **Proof by reduction**?

To use proof by reduction to prove that \(E_{\text{TM}} \) is undecidable, we must reduce an undecidable set to \(E_{\text{TM}} \)
Claim: E_{TM} is undecidable.

- Proof by reduction
 - **Goal**: show that A_{TM} reduces to E_{TM}.
 - i.e. Build an algorithm that uses a decider for E_{TM} as a subroutine and that decides A_{TM}
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M, w>$ and w is in $L(M)$.
 - "On input $<M, w>$:
 - Run R on input $<M>$. If rejects, reject.
 - If accepts, run M on input w.
 - If accepts, accept; if reject, reject."
Claim: E_{TM} is undecidable.

- Proof by reduction...
 - Assume: have a TM, R, that decides E_{TM}.
 - Build: new TM, M_{ATM}, that decides A_{TM}.
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - Run R on input $<M>$. If rejects, reject.
 - If accepts, run M on input w.
 - If accepts, accept; if reject, reject."

Does the machine M_{ATM} always halt?

A. Yes.
B. No, not if $L(M)$ is empty.
C. No, not if $L(M)$ is nonempty.
D. No, not if M is not a decider.
E. I don't know.
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w."

Fixed version
Claim: E_{TM} is undecidable.

- **Proof by reduction...**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.

For a given $<M,w>$, what's $L(X)$?
A. $\{w\}$
B. w
C. $\{x \mid x \neq w\}$
D. Σ^*
E. The empty set.
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.
 - Run R on $<X>$.
 - If accepts, reject; if rejects; accept."
Proof by reduction…

Assume: have a TM, R, that decides E_{TM}
Build: new TM, M_{ATM}, that decides A_{TM}
 • Always halts
 • Accepts iff input $<M,w>$ and w is in $L(M)$.
 • "On input $<M,w>$:
 • First, build the TM X which, on input x, ignores x and simulates M on w.
 • Run R on $<X>$.
 • If accepts, reject; if rejects; accept."

Correctness: Is M_{ATM} a decider for A_{TM}?
So far

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Recognizable (and not decidable)</th>
<th>Not recognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>??</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>HALT_{TM}</td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td>E_{TM}</td>
<td></td>
</tr>
<tr>
<td>ALL_{DFA} (HW)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization OR reduction