Program Representations
Representing programs

• Goals
Representing programs

• Primary goals
 – analysis is easy and effective
 • just a few cases to handle
 • directly link related things
 – transformations are easy to perform
 – general, across input languages and target machines

• Additional goals
 – compact in memory
 – easy to translate to and from
 – tracks info from source through to binary, for source-level debugging, profilling, typed binaries
 – extensible (new opts, targets, language features)
 – displayable
Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- Example: Abstract Syntax Tree

Source:
```
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

AST:
```
for
  i
  1
  10
  :=
  [ ]
  *
  a
  i
  [ ]
  5
  b
  i
```
Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine

- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)

<table>
<thead>
<tr>
<th>Standard RTL instrs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignment</td>
</tr>
<tr>
<td>unary op</td>
</tr>
<tr>
<td>binary op</td>
</tr>
<tr>
<td>address-of</td>
</tr>
<tr>
<td>load</td>
</tr>
<tr>
<td>store</td>
</tr>
<tr>
<td>call</td>
</tr>
<tr>
<td>unary compare</td>
</tr>
<tr>
<td>binary compare</td>
</tr>
</tbody>
</table>
Option 2: low-level IR

Source:

```plaintext
for i := 1 to 10 do
    a[i] := b[i] * 5;
end
```

Control flow graph containing RTL instructions:

```
  i := 1
  i <= 10?
    t1 := i * 4
    t2 := & b
    t3 := *(t2 + t1)
    t4 := t3 * 5
    t5 := i * 4
    t6 := & a
    *(t6 + t5) := t4
  i := i + 1
```
Comparison
Comparison

- Advantages of high-level rep
 - analysis can exploit high-level knowledge of constructs
 - easy to map to source code (debugging, profiling)

- Advantages of low-level rep
 - can do low-level, machine specific reasoning
 - can be language-independent

- Can mix multiple reps in the same compiler
Components of representation

- Control dependencies: sequencing of operations
 - evaluation of if & then
 - side-effects of statements occur in right order
- Data dependencies: flow of definitions from defs to uses
 - operands computed before operations
- Ideal: represent just dependencies that matter
 - dependencies constrain transformations
 - fewest dependences \Rightarrow flexibility in implementation
Control dependencies

• Option 1: high-level representation
 – control implicit in semantics of AST nodes

• Option 2: control flow graph (CFG)
 – nodes are individual instructions
 – edges represent control flow between instructions

• Options 2b: CFG with basic blocks
 – basic block: sequence of instructions that don’t have any branches, and that have a single entry point
 – BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis
Control dependencies

• CFG does not capture loops very well

• Some fancier options include:
 – the Control Dependence Graph
 – the Program Dependence Graph

• More on this later. Let’s first look at data dependencies
Data dependencies

- Simplest way to represent data dependencies: def/use chains
Def/use chains

- Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- Must update after each transformation
- Space consuming
SSA

• Static Single Assignment
 – invariant: each use of a variable has only one def
SSA

- Create a new variable for each def
- Insert ϕ pseudo-assignments at merge points
- Adjust uses to refer to appropriate new names

Question: how can one figure out where to insert ϕ nodes using a liveness analysis and a reaching defns analysis.
Converting back from SSA

• Semantics of $x_3 := \phi(x_1, x_2)$
 – set x_3 to x_i if execution came from ith predecessor

• How to implement ϕ nodes?
Converting back from SSA

• Semantics of $x_3 := \phi(x_1, x_2)$
 – set x_3 to x_i if execution came from ith predecessor

• How to implement ϕ nodes?
 – Insert assignment $x_3 := x_1$ along 1st predecessor
 – Insert assignment $x_3 := x_2$ along 2nd predecessor

• If register allocator assigns x_1, x_2 and x_3 to the same register, these moves can be removed
 – x_1 .. x_n usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var

- Domain:

\[
\{ x \to E_1, \ y \to E_2, \ z \to E_3 \}
\]

\[
S = \{ x \to E \mid x \in \text{Var}, \ E \in \text{Exp} \}
\]

\[
\emptyset \in S
\]

\[
\top = S
\]

\[
\bot \in S
\]

\[
u = \vee
\]
Recall: CSE Flow functions

\[
\begin{align*}
\text{F}_X &:= Y \text{ op } Z(in) = \text{in} - \{ X \rightarrow * \} \\
&\quad - \{ * \rightarrow \ldots X \ldots \} \cup \\
&\quad \{ X \rightarrow Y \text{ op } Z \mid X \neq Y \land X \neq Z \}\end{align*}
\]

\[
\begin{align*}
\text{F}_X &:= Y(in) = \text{in} - \{ X \rightarrow * \} \\
&\quad - \{ * \rightarrow \ldots X \ldots \} \cup \\
&\quad \{ X \rightarrow E \mid Y \rightarrow E \in \text{in} \}\end{align*}
\]
Example

\[
i := a + b \\
x := i * 4
\]

\[
j := i \\
i := c \\
z := j * 4
\]

\[
m := b + a \\
w := 4 * m
\]

\[
y := i * 4 \\
i := i + 1
\]
Example

\[
\begin{align*}
i &:= a + b \\
x &:= i \times 4
\end{align*}
\]

\[
\begin{align*}
j &:= i \\
i &:= c \\
z &:= j \times 4
\end{align*}
\]

\[
\begin{align*}
m &:= b + a \\
w &:= 4 \times m
\end{align*}
\]

\[
\begin{align*}
y &:= i \times 4 \\
i &:= i + 1
\end{align*}
\]
Problems

• \(z := j \times 4 \) is not optimized to \(z := x \), even though \(x \) contains the value \(j \times 4 \)

• \(m := b + a \) is not optimized, even though \(a + b \) was already computed

• \(w := 4 \times m \) is not optimized to \(w := x \), even though \(x \) contains the value \(4 \times m \)
Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[
\begin{align*}
\text{in} & \quad X := Y \text{ op } Z \\
\text{out} & \quad F_X := Y \text{ op } Z(in) = \\
\text{in}_0 & \quad X := \phi(Y, Z) \\
\text{in}_1 & \quad F_X := \phi(Y, Z)(in_0, \text{ in}_1) =
\end{align*}
\]
Example in SSA

\[X := Y \text{ op } Z \]

\[F_X := Y \text{ op } Z(\text{in}) = \text{in} \cup \{ X \rightarrow Y \text{ op } Z \} \]

\[F_X := \phi(Y, Z)(\text{in}_0, \text{in}_1) = (\text{in}_0 \cap \text{in}_1) \cup \{ X \rightarrow E \mid Y \rightarrow E \in \text{in}_0 \land Z \rightarrow E \in \text{in}_1 \} \]
Example in SSA

\[
i := a + b
x := i \times 4
\]

\[
j := i
i := c
z := j \times 4
\]

\[
m := b + a
w := 4 \times m
\]

\[
y := i \times 4
i := i + 1
\]
Example in SSA

\[i_1 := a_1 + b_1 \]
\[x_1 := i_1 \times 4 \]
\[j_1 := i_1 \]
\[i_2 := c_1 \]
\[z_1 := i_1 \times 4 \]
\[m_1 := a_1 + b_1 \]
\[w_1 := m_1 \times 4 \]
\[i_4 := \phi(i_1, i_3) \]
\[y_1 := i_4 \times 4 \]
\[i_3 := i_4 + 1 \]
What about pointers?

- Pointers complicate SSA. Several options.

- Option 1: don’t use SSA for pointed to variables
- Option 2: adapt SSA to account for pointers
- Option 3: define src language so that variables cannot be pointed to (eg: Java)
SSA helps us with CSE

• Let’s see what else SSA can help us with

• Loop-invariant code motion
Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking
Example

\[\begin{align*}
x & := 3 \\ y & := 4 \\ z & := x \times y \\ q & := y \times y \\ w & := y + 2 \\ y & := 5 \\ w & := w + 5 \\ p & := w + y \\ x & := x + 1 \\ q & := q + 1
\end{align*} \]
Example

\[
x := 3
\]
\[
y := 4
\]
\[
y := 5
\]
\[
z := x \times y
\]
\[
q := y \times y
\]
\[
w := y + 2
\]
\[
w := w + 5
\]
\[
p := w + y
\]
\[
x := x + 1
\]
\[
q := q + 1
\]
Detecting loop invariants

• An expression is invariant in a loop L iff:

(base cases)
 – it’s a constant
 – it’s a variable use, all of whose defs are outside of L

(inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Computing loop invariants

• Option 1: iterative dataflow analysis
 – optimistically assume all expressions loop-invariant, and propagate

• Option 2: build def/use chains
 – follow chains to identify and propagate invariant expressions

• Option 3: SSA
 – like option 2, but using SSA instead of def/use chains
Example using def/use chains

- An expression is invariant in a loop L iff:

 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L

 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Example using def/use chains

- An expression is invariant in a loop L iff:

 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L

 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

\begin{align*}
 x & := 3 \\
 y & := 4 \\
 y & := 5 \\
 z & := x \times y \\
 q & := y \times y \\
 w & := y + 2 \\
 w & := w + 5 \\
 p & := w + y \\
 x & := x + 1 \\
 q & := q + 1 \\
 q & := q + 1
\end{align*}
Loop invariant detection using SSA

• An expression is invariant in a loop L iff:

(base cases)
 – it’s a constant
 – it’s a variable use, all of whose single defs are outside of L

(inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

• \(\phi \) functions are not pure
Example using SSA

An expression is invariant in a loop L iff:

(base cases)
- it's a constant
- it's a variable use, all of whose single defs are outside of L

(inductive cases)
- it's a pure computation all of whose args are loop-invariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant

• \(\phi \) functions are not pure
Example using SSA and preheader

An expression is invariant in a loop L iff:

(base cases)
- it’s a constant
- it’s a variable use, all of whose single defs are outside of L

(inductive cases)
- it’s a pure computation all of whose args are loop-invariant
- it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

• \(\phi \) functions are not pure
Summary: Loop-invariant code motion

• Two steps: analysis and transformations

• Step 1: find invariant computations in loop
 – invariant: computes same result each time evaluated

• Step 2: move them outside loop
 – to top if used within loop: code hoisting
 – to bottom if used after loop: code sinking
Code motion

• Say we found an invariant computation, and we want to move it out of the loop (to loop pre-header)

• When is it legal?

• Need to preserve relative order of invariant computations to preserve data flow among move statements

• Need to preserve relative order between invariant computations and other computations
Example

\[
x := a \times b \\
y := x / z \\
i := i + 1
\]

\[
x := 0 \\
y := 1 \\
i := 0
\]

\[
z \neq 0 && i < 100 ?
\]

\[
x := a \times b \\
y := x / z \\
i := i + 1
\]

\[
q := x + 1
\]
Lesson from example: domination restriction

• To move statement S to loop pre-header, S must dominate all loop exits
 [A dominates B when all paths to B first pass through A]

• Otherwise may execute S when never executed otherwise

• If S is pure, then can relax this constraint at cost of possibly slowing down the program
Domination restriction in for loops

\[
i := 0
\]

\[
i < N?
\]

\[
x := a / b
\]

\[
i := i + 1
\]
Domination restriction in for loops

Before

\[
\begin{align*}
&i := 0 \\
&i < N? \\
&x := a / b \\
i := i + 1
\end{align*}
\]

After

\[
\begin{align*}
&i := 0 \\
&i < N? \\
x := a / b \\
i := i + 1
\end{align*}
\]
Avoiding domination restriction

- Domination restriction strict
 - Nothing inside branch can be moved
 - Nothing after a loop exit can be moved

- Can be circumvented through loop normalization
 - while-do => if-do-while
Another example

\[
\begin{align*}
z &:= 5 \\
i &:= 0 \\
z &:= z + 1 \\
z &:= 0 \\
i &:= i + 1 \\
i &< N ?
\end{align*}
\]

... z ...
Data dependence restriction

• To move S: $z := x \text{ op } y$:
 S must be the only assignment to z in loop, and no use of z in loop reached by any def other than S

• Otherwise may reorder defs/uses
Avoiding data restriction

\[z := z + 1\]
\[i := i + 1\]
\[z := 0\]
\[i := 0\]
\[i < N?\]

\[z := z + 1\]
\[z := 0\]
\[i := i + 1\]
\[i < N?\]
Avoiding data restriction

- Restriction unnecessary in SSA!!
- Implementation of phi nodes as moves will cope with re-ordered defs/uses
Summary of Data dependencies

• We’ve seen SSA, a way to encode data dependencies better than just def/use chains
 – makes CSE easier
 – makes loop invariant detection easier
 – makes code motion easier

• Now we move on to looking at how to encode control dependencies
Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 – there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 – X is not post-dominated by Y
Control Dependencies

- A node (basic block) \(Y \) is control-dependent on another \(X \) iff \(X \) determines whether \(Y \) executes
 - there exists a path from \(X \) to \(Y \) s.t. every node in the path other than \(X \) and \(Y \) is post-dominated by \(Y \)
 - \(X \) is not post-dominated by \(Y \)
Example

1. \(y := p + q \)
2. \(x > 0? \)
3. \(a := x \times y \)
4. \(a := y - 2 \)
5. \(w := y / q \)
6. \(x > 0? \)
7. \(b := 1 \ll w \)
8. \(r := a \% b \)
Example

```
Proc

1 y := p + q
2 x > 0?

3 a := x * y
4 a := y - 2

5 w := y / q
6 x > 0?

7 b := 1 << w

8 r := a % b
```

Control dependence relation:

- 3 depends on 2
- 4 depends on 2
- 7 depends on 6
Control Dependence Graph

- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node

- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph
Example

1. $y := p + q$
 2. $x > 0$?

 3. $a := x \ast y$
 4. $a := y - 2$

 5. $w := y / q$
 6. $x > 0$?

 7. $b := 1 \ll w$

 8. $r := a \% b$

Control dependence relation

3 depends on 2
4 depends on 2
7 depends on 6
Example

1. \(y := p + q \)
2. \(x > 0? \)
3. \(a := x \times y \)
4. \(a := y - 2 \)
5. \(w := y / q \)
6. \(x > 0? \)
7. \(b := 1 \times w \)
8. \(r := a \% b \)

Control dependence relation:
3 depends on 2
4 depends on 2
7 depends on 6

Root
Another example
Another example
Another example

\[
\begin{array}{l}
\text{(1) } i_1 := 0; \\
\text{while (2) } \ldots \text{ do} \\
\text{(3) } i_3 := \phi(i_1, i_2); \\
\text{(4) } x := i_3 * b; \\
\text{if (5) } \ldots \text{ then} \\
\text{(6) } w := c * c; \\
\text{(7) } y_1 := 9 + w; \\
\text{else} \\
\text{(8) } y_2 := 9; \\
\text{end} \\
\text{(9) } y_3 := \phi(y_1, y_2); \\
\text{(10) } \text{print}(y_3); \\
\text{(11) } i_2 := i_3 + 1; \\
\text{end}
\end{array}
\]
Summary of Control Dependence Graph

• More flexible way of representing control-depencies than CFG (less constraining)

• Makes code motion a local transformation

• However, much harder to convert back to an executable form
Course summary so far

• Dataflow analysis
 – flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP

• Advanced Program Representations
 – SSA, CDG, PDG

• Along the way, several analyses and opts
 – reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion

• Pointer analysis
 – Andersen, Steensgaard, and long the way: flow-insensitive analysis

• Next: dealing with procedures