Program Representations

Representing programs

- **Goals**
 - Analysis is easy and effective
 - Just a few cases to handle
 - Transformations are easy to perform
 - General, across input languages and target machines
 - Additional goals
 - Compact in memory
 - Easy to translate to and from
 - Tracks info from source through to binary, for source-level debugging, profiling, typed binaries
 - Extensible (new opts, targets, language features)
 - Displayable

Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- Example: Abstract Syntax Tree

```
Source:
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine
- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)
- Standard RTL instrs:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>RTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>assign</td>
<td>i := y;</td>
</tr>
<tr>
<td>unary op</td>
<td>i := op y;</td>
</tr>
<tr>
<td>binary op</td>
<td>i := y op z;</td>
</tr>
<tr>
<td>load</td>
<td>i := *(p + o);</td>
</tr>
<tr>
<td>store</td>
<td>*(p + o) := x;</td>
</tr>
<tr>
<td>call</td>
<td>i := f(...);</td>
</tr>
<tr>
<td>unary compare</td>
<td>op x ?</td>
</tr>
<tr>
<td>binary compare</td>
<td>op y ?</td>
</tr>
</tbody>
</table>

Option 2: low-level IR

```
Source:
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

Control flow graph containing RTL instructions:
Comparison

- Advantages of high-level rep
 - analysis can exploit high-level knowledge of constructs
 - easy to map to source code (debugging, profiling)
- Advantages of low-level rep
 - can do low-level, machine specific reasoning
 - can be language-independent
- Can mix multiple reps in the same compiler

Components of representation

- Control dependencies: sequencing of operations
 - evaluation of if & then
 - side-effects of statements occur in right order
- Data dependencies: flow of definitions from defs to uses
 - operands computed before operations
- Ideal: represent just dependencies that matter
 - dependencies constrain transformations
 - fewest dependences ⇒ flexibility in implementation

Control dependencies

- Option 1: high-level representation
 - control implicit in semantics of AST nodes
- Option 2: control flow graph (CFG)
 - nodes are individual instructions
 - edges represent control flow between instructions
- Options 2b: CFG with basic blocks
 - basic block: sequence of instructions that don’t have any branches, and that have a single entry point
 - BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis

Data dependencies

- Simplest way to represent data dependencies: def/use chains

More on this later. Let’s first look at data dependencies
Def/use chains

- Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- Must update after each transformation
- Space consuming

SSA

- Static Single Assignment
 - invariant: each use of a variable has only one def

SSA

- Create a new variable for each def
- Insert \(\phi\) pseudo-assignments at merge points
- Adjust uses to refer to appropriate new names

Question: how can one figure out where to insert \(\phi\) nodes using a liveness analysis and a reaching definitions analysis.

Converting back from SSA

- Semantics of \(x_3 := \phi(x_1, x_2)\)
 - set \(x_3\) to \(x_i\) if execution came from \(i\)th predecessor
- How to implement \(\phi\) nodes?

Converting back from SSA

- Semantics of \(x_3 := \phi(x_1, x_2)\)
 - set \(x_3\) to \(x_i\) if execution came from \(i\)th predecessor
- How to implement \(\phi\) nodes?
 - Insert assignment \(x_3 := x_1\) along 1st predecessor
 - Insert assignment \(x_3 := x_2\) along 2nd predecessor
- If register allocator assigns \(x_1, x_2\) and \(x_3\) to the same register, these moves can be removed
 - \(x_1 .. x_n\) usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain:
 $\{ X \Rightarrow E_i, Y \Rightarrow E_e, Z \Rightarrow E_z \}$
 $\subseteq \{ X \Rightarrow E | X \in \text{un}, E \in \mathcal{E}_{pop} \}$

Recall: CSE Flow functions

- $F_{X := Y \, op \, Z}(\text{in}) = \text{in} - \{ X \Rightarrow \} - \{ \Rightarrow \}$
- $\cup \{ X \Rightarrow Y \, op \, Z \mid X \neq Y \land X \neq Z \}$

Example

- $i := a + b$
- $x := i \times 4$
- $y := i \times 4$
- $i := i + 1$
- $m := b + a$
- $w := 4 \times m$

Example

- $i := a + b$
- $x := i \times 4$
- $j := i$
- $i := c$
- $z := j \times 4$
- $m := b + a$
- $w := 4 \times m$

Problems

- $z := j \times 4$ is not optimized to $z := x$, even though x contains the value $j \times 4$
- $m := b + a$ is not optimized, even though $a + b$ was already computed
- $w := 4 \times m$ it not optimized to $w := x$, even though x contains the value $4 \times m$

Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[
\begin{align*}
X &:= Y \text{ op } Z \\
in &\leftarrow X \\
\text{out} &\rightarrow Y \text{ \ op } Z
\end{align*}
\]

\[
F_{X := Y \text{ op } Z}(\text{in}) = \phi(Y, Z)
\]

\[
\begin{align*}
\text{in} &\leftarrow X \\
\text{out} &\rightarrow \phi(Y, Z)
\end{align*}
\]

\[
F_{X := \phi(Y, Z)}(\text{in}, \text{in}) = \phi(Y, Z) \cap \phi(\text{in})
\]

Example in SSA

\[
\begin{align*}
i &:= a + b \\
x &:= i \times 4
\end{align*}
\]

\[
\begin{align*}
j &:= i \\
i &:= c \\
x &:= j \times 4
\end{align*}
\]

\[
\begin{align*}
i &:= a + b \\
x &:= a \times 4
\end{align*}
\]

What about pointers?

• Pointers complicate SSA. Several options.

• Option 1: don’t use SSA for pointed to variables
• Option 2: adapt SSA to account for pointers
• Option 3: define src language so that variables cannot be pointed to (eg: Java)

SSA helps us with CSE

• Let’s see what else SSA can help us with

• Loop-invariant code motion
Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Example

- An expression is invariant in a loop L iff:
 - (base cases)
 - it's a constant
 - it's a variable use, all of whose defs are outside of L
 - (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate

- Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions

- Option 3: SSA
 - like option 2, but using SSA instead of def/use chains

Example using def/use chains

- An expression is invariant in a loop L iff:
 - (base cases)
 - it's a constant
 - it's a variable use, all of whose defs are outside of L
 - (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use with only one reaching def, and the rhs of that def is loop-invariant
Example using def/use chains

• An expression is invariant in a loop L iff:
 (base cases)
 – it’s a constant
 – it’s a variable use, all of whose defs are outside of L
 (inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

Example using SSA

• An expression is invariant in a loop L iff:
 (base cases)
 – it’s a constant
 – it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant
 • $$\phi$$ functions are not pure

Example using SSA

• An expression is invariant in a loop L iff:
 (base cases)
 – it’s a constant
 – it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

Example using SSA and preheader

• An expression is invariant in a loop L iff:
 (base cases)
 – it’s a constant
 – it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

• $$\phi$$ functions are not pure

Summary: Loop-invariant code motion

• Two steps: analysis and transformations

• Step1: find invariant computations in loop
 – invariant: computes same result each time evaluated

• Step 2: move them outside loop
 – to top if used within loop: code hoisting
 – to bottom if used after loop: code sinking

Code motion

• Say we found an invariant computation, and we want to move it out of the loop (to loop preheader)

• When is it legal?

• Need to preserve relative order of invariant computations to preserve data flow among move statements

• Need to preserve relative order between invariant computations and other computations
Lesson from example: domination restriction

- To move statement S to loop pre-header, S must **dominate** all loop exits

 \[A \text{ dominates } B \text{ when all paths to } B \text{ first pass through } A \]

- Otherwise may execute S when never executed otherwise

- If S is pure, then can relax this constraint at cost of possibly slowing down the program

Avoiding domination restriction

- Domination restriction strict
 - Nothing inside branch can be moved
 - Nothing after a loop exit can be moved

- Can be circumvented through loop normalization
 - while-do \Rightarrow if-do-while

Another example
Data dependence restriction

- To move S: $z := x \text{ op } y$:

 S must be the only assignment to z in loop, and no use of z in loop reached by any def other than S

- Otherwise may reorder defs/uses

Avoiding data restriction

- Restriction unnecessary in SSA!!!
- Implementation of phi nodes as moves will cope with re-ordereddefs/uses

Summary of Data dependencies

- We’ve seen SSA, a way to encode data dependencies better than just def/use chains
 - makes CSE easier
 - makes loop invariant detection easier
 - makes code motion easier

- Now we move on to looking at how to encode control dependencies

Control Dependencies

- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y
Control Dependence Graph

- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node
- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph

Another example
Summary of Control Dependence Graph

- More flexible way of representing control-depencies than CFG (less constraining)
- Makes code motion a local transformation
- However, much harder to convert back to an executable form

Course summary so far

- Dataflow analysis
 - flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP
- Advanced Program Representations
 - SSA, CDG, PDG
- Along the way, several analyses and opts
 - reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion
- Pointer analysis
 - Andersen, Steensgaard, and long the way: flow-insensitive analysis
- Next: dealing with procedures