Program Representations
Representing programs

- Goals
Representing programs

• Primary goals
 – analysis is easy and effective
 • just a few cases to handle
 • directly link related things
 – transformations are easy to perform
 – general, across input languages and target machines

• Additional goals
 – compact in memory
 – easy to translate to and from
 – tracks info from source through to binary, for source-level debugging, profiling, typed binaries
 – extensible (new opts, targets, language features)
 – displayable
Option 1: high-level syntax based IR

• Represent source-level structures and expressions directly

• Example: Abstract Syntax Tree

Source:

```
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

AST:
Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine

- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)

<table>
<thead>
<tr>
<th>Standard RTL instrs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignment</td>
</tr>
<tr>
<td>unary op</td>
</tr>
<tr>
<td>binary op</td>
</tr>
<tr>
<td>address-of</td>
</tr>
<tr>
<td>load</td>
</tr>
<tr>
<td>store</td>
</tr>
<tr>
<td>call</td>
</tr>
<tr>
<td>unary compare</td>
</tr>
<tr>
<td>binary compare</td>
</tr>
</tbody>
</table>
Option 2: low-level IR

Source:

```
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

Control flow graph containing RTL instructions:

```
\[
\begin{align*}
  i := & 1 \\
  i \leq 10? \\
  t1 := & i * 4 \\
  t2 := & b \\
  t3 := & (t2 + t1) \\
  t4 := & t3 * 5 \\
  t5 := & i * 4 \\
  t6 := & a \\
  *(t6 + t5) := & t4 \\
  i := & i + 1
\end{align*}
\]```
Comparison
Comparison

• Advantages of high-level rep
  – analysis can exploit high-level knowledge of constructs
  – easy to map to source code (debugging, profiling)

• Advantages of low-level rep
  – can do low-level, machine specific reasoning
  – can be language-independent

• Can mix multiple reps in the same compiler
Components of representation

• Control dependencies: sequencing of operations
  – evaluation of if & then
  – side-effects of statements occur in right order

• Data dependencies: flow of definitions from defs to uses
  – operands computed before operations

• Ideal: represent just dependencies that matter
  – dependencies constrain transformations
  – fewest dependences ⇒ flexibility in implementation
Control dependencies

• Option 1: high-level representation
  – control implicit in semantics of AST nodes

• Option 2: control flow graph (CFG)
  – nodes are individual instructions
  – edges represent control flow between instructions

• Options 2b: CFG with basic blocks
  – basic block: sequence of instructions that don’t have any branches, and that have a single entry point
  – BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis
Control dependencies

• CFG does not capture loops very well

• Some fancier options include:
  – the Control Dependence Graph
  – the Program Dependence Graph

• More on this later. Let’s first look at data dependencies
Data dependencies

- Simplest way to represent data dependencies: def/use chains
Def/use chains

- Directly captures dataflow
  - works well for things like constant prop

- But...

- Ignores control flow
  - misses some opt opportunities since conservatively considers all paths
  - not executable by itself (for example, need to keep CFG around)
  - not appropriate for code motion transformations

- Must update after each transformation

- Space consuming
SSA

- Static Single Assignment
  - invariant: each use of a variable has only one def
\[ x_1 := \ldots \]
\[ y_1 := \ldots \]
\[ \ldots x \ldots \]

\[ x_2 := x_1 + y_1 \]
\[ \ldots x_2 \ldots \]

\[ x_3 := \ldots \]
\[ y_2 := y_1 + 1 \]
\[ \ldots x_3 \ldots \]

\[ x_4 = \phi(x_2, x_3) \]
\[ y_3 = \phi(y_1, y_2) \]
\[ \ldots y \ldots \]

\[ \ldots y_3 \ldots \]

\[ \ldots y_3 \ldots \]

\[ \ldots y_3 \ldots \]
SSA

- Create a new variable for each def
- Insert $\phi$ pseudo-assignments at merge points
- Adjust uses to refer to appropriate new names

- Question: how can one figure out where to insert $\phi$ nodes using a liveness analysis and a reaching defns analysis.
Converting back from SSA

- Semantics of $x_3 := \phi(x_1, x_2)$
  - set $x_3$ to $x_i$ if execution came from $i$th predecessor

- How to implement $\phi$ nodes?
Converting back from SSA

- Semantics of $x_3 := \phi(x_1, x_2)$
  - set $x_3$ to $x_i$ if execution came from $i$th predecessor

- How to implement $\phi$ nodes?
  - Insert assignment $x_3 := x_1$ along 1$^{\text{st}}$ predecessor
  - Insert assignment $x_3 := x_2$ along 2$^{\text{nd}}$ predecessor

- If register allocator assigns $x_1$, $x_2$ and $x_3$ to the same register, these moves can be removed
  - $x_1$..$x_n$ usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

• Want to compute when an expression is available in a var

• Domain:
  \[ \{ x \to \widehat{E}_1, \ y \to \widehat{E}_2, \ z \to \widehat{E}_3 \} \]

\[ S = \{ x \to E \mid x \in \text{Var}, \ E \in \text{Exp} \} \]

0 \in S

f \in S

T \subseteq \emptyset

u \in \Lambda
Recall: CSE Flow functions

\[ X := Y \text{ op } Z \]

\[ F_{X := Y \text{ op } Z}(\text{in}) = \text{in} - \{ X \rightarrow \ast \} \]
\[ - \{ \ast \rightarrow \ldots X \ldots \} \cup \]
\[ \{ X \rightarrow Y \text{ op } Z \mid X \neq Y \land X \neq Z \} \]

\[ X := Y \]

\[ F_{X := Y}(\text{in}) = \text{in} - \{ X \rightarrow \ast \} \]
\[ - \{ \ast \rightarrow \ldots X \ldots \} \cup \]
\[ \{ X \rightarrow E \mid Y \rightarrow E \in \text{in} \} \]
Example

```plaintext
i := a + b
x := i * 4

j := i
i := c
z := j * 4

m := b + a
w := 4 * m

y := i * 4
i := i + 1

m := b + a
w := 4 * m
```
Example

\[ i := a + b \]
\[ x := i \times 4 \]
\[ y := i \times 4 \]
\[ i := i + 1 \]
\[ m := b + a \]
\[ w := 4 \times m \]
\[ j := i \]
\[ i := c \]
\[ z := j \times 4 \]
Problems

• z := j * 4 is not optimized to z := x, even though x contains the value j * 4

• m := b + a is not optimized, even though a + b was already computed

• w := 4 * m is not optimized to w := x, even though x contains the value 4 * m
Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[ X := Y \circ Z \]

\[ F_X := \phi(Y, Z) \]

\[ F_X := \phi(Y, Z)(\text{in}_0, \text{in}_1) = \]

\[ \text{in} \cup \{ X \rightarrow Y \circ Z \} \]
Example in SSA

\[ X := Y \text{ op } Z \]

\[ F_X := Y \text{ op } Z(\text{in}) = \text{in} \cup \{ X \rightarrow Y \text{ op } Z \} \]

\[ X := \phi(Y, Z) \]

\[ F_X := \phi(Y, Z)(\text{in}_0, \text{in}_1) = (\text{in}_0 \cap \text{in}_1) \cup \{ X \rightarrow E \mid Y \rightarrow E \in \text{in}_0 \wedge Z \rightarrow E \in \text{in}_1 \} \]
Example in SSA

\[
\begin{align*}
i_1 &:= a + b \\
x_1 &:= i_1 * 4 \\
j_1 &:= i_1 \\
i_2 &:= c \\
z_1 &:= j_1 * 4 \\
m_1 &:= b + a \\
w_1 &:= 4 * m_1 \\
i_4 &:= \phi(i_1, i_1) \\
y_1 &:= i_4 * 4 \\
i_3 &:= i_4 + 1
\end{align*}
\]
Example in SSA

\[ i_1 := a_1 + b_1 \]
\[ x_1 := i_1 \times 4 \]
\[ j_1 := i_1 \]
\[ i_2 := c_1 \]
\[ z_1 := i_1 \times 4 \]
\[ i_4 := \phi(i_1, i_3) \]
\[ y_1 := i_4 \times 4 \]
\[ i_3 := i_4 + 1 \]
\[ m_1 := a_1 + b_1 \]
\[ w_1 := m_1 \times 4 \]
What about pointers?

• Pointers complicate SSA. Several options.

• Option 1: don’t use SSA for pointed to variables
• Option 2: adapt SSA to account for pointers
• Option 3: define src language so that variables cannot be pointed to (eg: Java)
SSA helps us with CSE

• Let’s see what else SSA can help us with

• Loop-invariant code motion
Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
  - invariant: computes same result each time evaluated

- Step 2: move them outside loop
  - to top if used within loop: code hoisting
  - to bottom if used after loop: code sinking
Example

\[
x := 3
\]

\[
y := 4
\]

\[
y := 5
\]

\[
z := x \times y
\]

\[
q := y \times y
\]

\[
w := y + 2
\]

\[
w := w + 5
\]

\[
p := w + y
\]

\[
x := x + 1
\]

\[
q := q + 1
\]
Example

\[ x := 3 \]
\[ y := 4 \]
\[ y := 5 \]
\[ z := x \times y \]
\[ q := y \times y \]
\[ w := y + 2 \]
\[ w := w + 5 \]
\[ p := w + y \]
\[ x := x + 1 \]
\[ q := q + 1 \]
Detecting loop invariants

- An expression is invariant in a loop $L$ iff:

  (base cases)
  - it’s a constant
  - it’s a variable use, all of whose defs are outside of $L$

  (inductive cases)
  - it’s a pure computation all of whose args are loop-invariant
  - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Computing loop invariants

- Option 1: iterative dataflow analysis
  - optimistically assume all expressions loop-invariant, and propagate

- Option 2: build def/use chains
  - follow chains to identify and propagate invariant expressions

- Option 3: SSA
  - like option 2, but using SSA instead of def/use chains
Example using def/use chains

• An expression is invariant in a loop L iff:

  (base cases)
  – it’s a constant
  – it’s a variable use, all of whose defs are outside of L

  (inductive cases)
  – it’s a pure computation all of whose args are loop-invariant
  – it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Example using def/use chains

- An expression is invariant in a loop L iff:
  
  (base cases)
  - it’s a constant
  - it’s a variable use, all of whose defs are outside of L

  (inductive cases)
  - it’s a pure computation all of whose args are loop-invariant
  - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Loop invariant detection using SSA

• An expression is invariant in a loop L iff:

  (base cases)
  – it’s a constant
  – it’s a variable use, all of whose single defs are outside of L

  (inductive cases)
  – it’s a pure computation all of whose args are loop-invariant
  – it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

• $\phi$ functions are not pure
Example using SSA

- An expression is invariant in a loop L iff:
  
  (base cases)
  - it’s a constant
  - it’s a variable use, all of whose single defs are outside of L

  (inductive cases)
  - it’s a pure computation all of whose args are loop-invariant
  - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

- $\phi$ functions are not pure
Example using SSA and preheader

- An expression is invariant in a loop L iff:
  (base cases)
  - it’s a constant
  - it’s a variable use, all of whose single defs are outside of L

  (inductive cases)
  - it’s a pure computation all of whose args are loop-invariant
  - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

- $\phi$ functions are not pure
Summary: Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
  - invariant: computes same result each time evaluated

- Step 2: move them outside loop
  - to top if used within loop: code hoisting
  - to bottom if used after loop: code sinking
Code motion

• Say we found an invariant computation, and we want to move it out of the loop (to loop pre-header)

• When is it legal?

• Need to preserve relative order of invariant computations to preserve data flow among move statements

• Need to preserve relative order between invariant computations and other computations
Example

```
x := a * b
y := x / z
i := i + 1
```

```
x := 0
y := 1
i := 0
```

```
z != 0 &&
i < 100 ?
```

```
x := a * b
y := x / z
i := i + 1
```

```
q := x + 1
```
Lesson from example: domination restriction

• To move statement S to loop pre-header, S must **dominate** all loop exits
  
  [ A dominates B when all paths to B first pass through A ]

• Otherwise may execute S when never executed otherwise

• If S is pure, then can relax this constraint at cost of possibly slowing down the program
Domination restriction in for loops

i := 0

i < N?

x := a / b
i := i + 1
Domination restriction in for loops

Before

\[
i := 0
\]

\[
i < N? 
\]

\[
x := a / b 
\]

\[
i := i + 1
\]

After

\[
i := 0
\]

\[
i < N?
\]

\[
x := a / b 
\]

\[
i := i + 1
\]

\[
i < N?
\]
Avoiding domination restriction

• Domination restriction strict
  – Nothing inside branch can be moved
  – Nothing after a loop exit can be moved

• Can be circumvented through loop normalization
  – while-do => if-do-while
Another example

```
// A loop example
z := 5
i := 0

z := z + 1

z := 0

i := i + 1

i < N ?

... z ...
```
Data dependence restriction

- To move $S$: $z := x \text{ op } y$:
  
  $S$ must be the only assignment to $z$ in loop, and no use of $z$ in loop reached by any def other than $S$

- Otherwise may reorder defs/uses
Avoiding data restriction

\[
\begin{align*}
  z &:= 5 \\
  i &= 0 \\
  z &:= z + 1 \\
  z &= 0 \\
  i &= i + 1 \\
  i &< N \\
\end{align*}
\]

\[
\ldots z \ldots
\]
Avoiding data restriction

\[ z_1 := 5 \]
\[ i_1 := 0 \]

\[ z_2 := \phi(z_1, z_4) \]
\[ i_2 := \phi(i_1, i_3) \]
\[ z_3 := z_2 + 1 \]
\[ z_4 := 0 \]
\[ i_3 := i_2 + 1 \]
\[ i_3 < N ? \]

- Restriction unnecessary in SSA!!!
- Implementation of phi nodes as moves will cope with re-ordered defs/uses

\[ \ldots z_4 \ldots \]
Summary of Data dependencies

• We’ve seen SSA, a way to encode data dependencies better than just def/use chains
  – makes CSE easier
  – makes loop invariant detection easier
  – makes code motion easier

• Now we move on to looking at how to encode control dependencies
Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
  – there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
  – X is not post-dominated by Y
Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
  – there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
  – X is not post-dominated by Y
Example

1. \( y := p + q \)
2. \( x > 0? \)
3. \( a := x \times y \)
4. \( a := y - 2 \)
5. \( w := y / q \)
6. \( x > 0? \)
7. \( b := 1 \ll w \)
8. \( r := a \% b \)
Example

Control dependence relation

3 depends on 2
4 " " 2
7 " " 6

```
Proc

1 y := p + q
2 x > 0?

3 a := x * y
4 a := y - 2

5 w := y / q
6 x > 0?

7 b := 1 << w

8 r := a % b

P
```

1 2 5 6
/   /
3    4
/   /
7

F/F
Control Dependence Graph

• Control dependence graph: Y descendent of X iff Y is control dependent on X
  – label each child edge with required condition
  – group all children with same condition under region node

• Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph
Control dependence relation
3 depends on 2
4 " " 2
7 " 6
Example

Control dependence relation

3 depends on 2
4 depends on 2
7 depends on 6

Root:

1
2
3
4
5
6
7
8

1
T
F
R_1
R_2
R_1

2
T
F
R_2
R_3
R_3

3
4
7

8

1
2
3
4
5
6
7

8

1
2
3
4
5
6
7

8
Another example
Another example
Another example

1. \( i_1 := 0; \)
2. while \( \ldots \) do
3. \( i_3 := \phi(i_1, i_2); \)
4. \( x := i_3 \times b; \)
5. if \( \ldots \) then
6. \( w := c \times c; \)
7. \( Y_1 := 9 + w; \)
8. else
9. \( Y_2 := 9; \)
10. end
11. \( Y_3 := \phi(Y_1, Y_2); \)
12. print(\( Y_3 \));
13. \( i_2 := i_3 + 1; \)
14. end
Summary of Control Dependence Graph

• More flexible way of representing control-depencies than CFG (less constraining)

• Makes code motion a local transformation

• However, much harder to convert back to an executable form
Course summary so far

• Dataflow analysis
  – flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP

• Advanced Program Representations
  – SSA, CDG, PDG

• Along the way, several analyses and opts
  – reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion

• Pointer analysis
  – Andersen, Steensgaard, and long the way: flow-insensitive analysis

• Next: dealing with procedures