Program Representations

Representing programs

- **Goals**
 - analysis is easy and effective
 - just a few cases to handle
 - transformations are easy to perform
 - general, across input languages and target machines

- **Additional goals**
 - compact in memory
 - easy to translate to and from
 - tracks info from source through to binary, for source-level debugging, profiling, typed binaries
 - extensible (new opts, targets, language features)
 - displayable

Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- Example: Abstract Syntax Tree

```
for i = 1 to 10 do
  a[i] := b[i] * 5;
end
```

Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine
- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignment</td>
<td>x := y;</td>
</tr>
<tr>
<td>unary op</td>
<td>x := op y;</td>
</tr>
<tr>
<td>binary op</td>
<td>x := y op z;</td>
</tr>
<tr>
<td>address-op</td>
<td>p := s[y];</td>
</tr>
<tr>
<td>load</td>
<td>x := *(p + o);</td>
</tr>
<tr>
<td>store</td>
<td>*(p + o) := x;</td>
</tr>
<tr>
<td>call</td>
<td>x := f(...);</td>
</tr>
<tr>
<td>unary compare</td>
<td>op x ?</td>
</tr>
<tr>
<td>binary compare</td>
<td>x op y ?</td>
</tr>
</tbody>
</table>

Option 2: low-level IR

Control flow graph containing RTL instructions:
Comparison

- Advantages of high-level rep
 - analysis can exploit high-level knowledge of constructs
 - easy to map to source code (debugging, profiling)

- Advantages of low-level rep
 - can do low-level, machine specific reasoning
 - can be language-independent

- Can mix multiple reps in the same compiler

Components of representation

- Control dependencies: sequencing of operations
 - evaluation of if & then
 - side-effects of statements occur in right order

- Data dependencies: flow of definitions from defs to uses
 - operands computed before operations

- Ideal: represent just dependencies that matter
 - dependencies constrain transformations
 - fewest dependences = flexibility in implementation

Control dependencies

- Option 1: high-level representation
 - control implicit in semantics of AST nodes

- Option 2: control flow graph (CFG)
 - nodes are individual instructions
 - edges represent control flow between instructions

- Options 2b: CFG with basic blocks
 - basic block: sequence of instructions that don’t have any branches, and that have a single entry point
 - BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis

Control dependencies

- CFG does not capture loops very well

- Some fancier options include:
 - the Control Dependence Graph
 - the Program Dependence Graph

- More on this later. Let’s first look at data dependencies

Data dependencies

- Simplest way to represent data dependencies: def/use chains

 - Some fancier options include:
 - the Control Dependence Graph
 - the Program Dependence Graph

 - More on this later. Let’s first look at data dependencies
Def/use chains

- Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- Must update after each transformation
- Space consuming

SSA

- Static Single Assignment
 - invariant: each use of a variable has only one def

SSA

- Create a new variable for each def
- Insert ϕ pseudo-assignments at merge points
- Adjust uses to refer to appropriate new names
- Question: how can one figure out where to insert ϕ nodes using a liveness analysis and a reaching defns analysis.

Converting back from SSA

- Semantics of \(x_3 := \phi(x_1, x_2) \)
 - set \(x_3 \) to \(x_i \) if execution came from \(i \)th predecessor
- How to implement \(\phi \) nodes?
 - Insert assignment \(x_3 := x_1 \) along 1st predecessor
 - Insert assignment \(x_3 := x_2 \) along 2nd predecessor
- If register allocator assigns \(x_1, x_2 \) and \(x_3 \) to the same register, these moves can be removed
 - \(x_1, .., x_n \) usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain:

\[
\{ X \mapsto E, Y \mapsto E_x, Z \mapsto E_z \}
\]

\[
S_2 \{ X \mapsto E \mid X \in \text{uniq}, E \in \text{free} \}
\]

\[
\emptyset \rightarrow \emptyset
\]

\[
\emptyset \rightarrow \emptyset
\]

\[
\emptyset \rightarrow \emptyset
\]

\[
X \rightarrow Y \text{ op } Z
\]

\[
F_{X := Y \text{ op } Z}(\text{in}) = \text{in} - \{ X \rightarrow * \}
\]

\[
\emptyset \rightarrow \emptyset
\]

\[
\emptyset \rightarrow \emptyset
\]

\[
\emptyset \rightarrow \emptyset
\]

Recall: CSE Flow functions

Example

\[
i := a + b
\]

\[
x := i \times 4
\]

\[
y := i \times 4
\]

\[
i := i + 1
\]

\[
m := b + a
\]

\[
w := 4 \times m
\]

\[
j := i
\]

\[
i := c
\]

\[
z := j \times 4
\]

Example

\[
i := a + b
\]

\[
x := i \times 4
\]

\[
y := i \times 4
\]

\[
i := i + 1
\]

\[
m := b + a
\]

\[
w := 4 \times m
\]

\[
j := i
\]

\[
i := c
\]

\[
z := j \times 4
\]

Problems

- \(z := j \times 4 \) is not optimized to \(z := x \), even though \(x \) contains the value \(j \times 4 \)
- \(m := b + a \) is not optimized, even though \(a + b \) was already computed
- \(w := 4 \times m \) it not optimized to \(w := x \), even though \(x \) contains the value \(4 \times m \)

Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[
\begin{align*}
\mathbf{X} & := \mathbf{Y} \text{ op } \mathbf{Z} \\
\text{in} & \quad \text{out}
\end{align*}
\]

\[
\mathbf{X} := \phi(\mathbf{Y}, \mathbf{Z})
\]

\[
\begin{align*}
\mathbf{Y} & \rightarrow E \\
\mathbf{Z} & \rightarrow E
\end{align*}
\]

\[
\begin{align*}
\mathbf{F}_{\mathbf{X} := \mathbf{Y} \text{ op } \mathbf{Z}}(\text{in}) & = \text{in} \cup \{ \mathbf{X} \rightarrow \mathbf{Z} \} \\
\mathbf{F}_{\phi(\mathbf{Y}, \mathbf{Z})}(\text{in}_0, \text{in}_1) & =
\end{align*}
\]

What about pointers?

- Pointers complicate SSA. Several options.
 - Option 1: don’t use SSA for pointed to variables
 - Option 2: adapt SSA to account for pointers
 - Option 3: define src language so that variables cannot be pointed to (eg: Java)

SSA helps us with CSE

- Let’s see what else SSA can help us with
 - Loop-invariant code motion
Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Example

\[
\begin{align*}
x & := 3 \\
y & := 4 \\
z & := x + 1 \\
x & := x + 1 \\
y & := y + 2 \\
z & := x + y \\
y & := y + 2 \\
w & := y + 2 \\
y & := y + 2 \\
w & := w + 5 \\
x & := x + 1 \\
q & := q + 1 \\
p & := w + y \\
q & := q + 1
\end{align*}
\]

Detecting loop invariants

- An expression is invariant in a loop L iff:
 (base cases)
 - it's a constant
 - it's a variable use, all of whose defs are outside of L
 (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate

- Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions

- Option 3: SSA
 - like option 2, but using SSA instead of def/use chains

Example using def/use chains

- An expression is invariant in a loop L iff:
 (base cases)
 - it's a constant
 - it's a variable use, all of whose defs are outside of L
 (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use with only one reaching def, and the rhs of that def is loop-invariant
Example using def/use chains

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

Example using SSA

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant
 - ϕ functions are not pure

Example using SSA and preheader

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant
 - ϕ functions are not pure

Summary: Loop-invariant code motion

- Two steps: analysis and transformations
- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated
- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Loop invariant detection using SSA

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant
 - ϕ functions are not pure

Example using SSA and preheader

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant
 - ϕ functions are not pure

Code motion

- Say we found an invariant computation, and we want to move it out of the loop (to loop pre-header)
- When is it legal?
- Need to preserve relative order of invariant computations to preserve data flow among move statements
- Need to preserve relative order between invariant computations and other computations
Example

\[x := 0 \]
\[y := 1 \]
\[i := 0 \]

\[x := a * b \]
\[y := x / z \]
\[i := i + 1 \]

\[z \neq 0 \land i < 100 \]?

\[q := x + 1 \]

Lesson from example: domination restriction

- To move statement S to loop pre-header, S must dominate all loop exits
 \[A \text{ dominates } B \text{ when all paths to } B \text{ first pass through } A \]

- Otherwise may execute S when never executed otherwise

- If S is pure, then can relax this constraint at cost of possibly slowing down the program

Domination restriction in for loops

\[i := 0 \]
\[i < N ? \]

\[x := a / b \]
\[i := i + 1 \]

Avoiding domination restriction

- Domination restriction strict
 - Nothing inside branch can be moved
 - Nothing after a loop exit can be moved

- Can be circumvented through loop normalization
 - while-do \=> if-do-while

Another example

\[x := 5 \]
\[i := 0 \]

\[x := x + 1 \]
\[z := 0 \]
\[i := i + 1 \]
\[i < N ? \]
\[\ldots \& \ldots \]
Data dependence restriction

- To move S: \(z := x \text{ op } y \):
 - S must be the only assignment to \(z \) in loop, and no use of \(z \) in loop reached by any def other than S
 - Otherwise may reorder defs/uses

Avoiding data restriction

\[z := 5 \]
\[i := 0 \]
\[z := z + 1 \]
\[i := 0 \]
\[z := 0 \]
\[i := i + 1 \]
\[i < N \]

Summary of Data dependencies

- We've seen SSA, a way to encode data dependencies better than just def/use chains
 - makes CSE easier
 - makes loop invariant detection easier
 - makes code motion easier
- Now we move on to looking at how to encode control dependencies

Control Dependencies

- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y
Control Dependence Graph

- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node
- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph

Another example
Summary of Control Dependence Graph

- More flexible way of representing control dependencies than CFG (less constraining)

- Makes code motion a local transformation

- However, much harder to convert back to an executable form

Course summary so far

- Dataflow analysis
 - flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP

- Advanced Program Representations
 - SSA, CDG, PDG

- Along the way, several analyses and opts
 - reaching defs, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion

- Pointer analysis
 - Andersen, Steensgaard, and long the way: flow-insensitive analysis

- Next: dealing with procedures