Pointer analysis
Pointer Analysis

• Outline:
 – What is pointer analysis
 – Intraprocedural pointer analysis
 – Interprocedural pointer analysis
 • Andersen and Steensgaard
Pointer and Alias Analysis

- Aliases: two expressions that denote the same memory location.

- Aliases are introduced by:
 - pointers
 - call-by-reference
 - array indexing
 - C unions
Useful for what?

- Improve the precision of analyses that require knowing what is modified or referenced (e.g., const prop, CSE ...)
- Eliminate redundant loads/stores and dead stores.

  ```
  x := *p;
  ...
  y := *p; // replace with y := x?
  ```

- Parallelization of code
 - can recursive calls to quick_sort be run in parallel? Yes, provided that they reference distinct regions of the array.

- Identify objects to be tracked in error detection tools
  ```
  x.lock();
  ...
  y.unlock(); // same object as x?
  ```
Kinds of alias information

• Points-to information (must or may versions)
 – at program point, compute a set of pairs of the form $p \rightarrow x$, where p points to x.
 – can represent this information in a points-to graph

• Alias pairs
 – at each program point, compute the set of all pairs (e_1, e_2) where e_1 and e_2 must/may reference the same memory.

• Storage shape analysis
 – at each program point, compute an abstract description of the pointer structure.
Intraprocedural Points-to Analysis

• Want to compute may-points-to information

• Lattice:

\[D = 2 \{ x \rightarrow y \mid x \in \text{Van}, y \in \text{Van} \} \]

\[\U = \emptyset \]

\[\preceq = \subseteq \]

\[\bot = \emptyset \]

\[T = \{ x \rightarrow y \mid x \in \text{Van}, y \in \text{Van} \} \]
Flow functions

\[
\begin{align*}
\text{in} & \quad \text{out} \\
\begin{array}{c}
x := k \\
\end{array} & \quad \begin{array}{c}
F_x := k(\text{in}) = \\
\end{array} \\
\text{in} & \quad \text{out} \\
\begin{array}{c}
x := a + b \\
\end{array} & \quad \begin{array}{c}
F_x := a+b(\text{in}) = \\
\end{array}
\end{align*}
\]
Flow functions

\[
\begin{align*}
F_{x := \text{y}}(\text{in}) &= \text{x := y} \\
F_{x := \&\text{y}}(\text{in}) &= \text{x := \&y}
\end{align*}
\]
Flow functions

\[x := *y \]

\[F_x := *y \text{(in)} = \]

\[*x := y \]

\[F_{*x} := y \text{(in)} = \]
Intraprocedural Points-to Analysis

• Flow functions:

\[
\begin{align*}
\text{kill}(x) & = \bigcup_{v \in Vars} \{(x, v)\} \\
F_{x:=k}(S) & = S - \text{kill}(x) \\
F_{x:=a+b}(S) & = S - \text{kill}(x) \\
F_{x:=y}(S) & = S - \text{kill}(x) \cup \{(x, v) \mid (y, v) \in S\} \\
F_{x:=\&y}(S) & = S - \text{kill}(x) \cup \{(x, y)\} \\
F_{x:=*y}(S) & = S - \text{kill}(x) \cup \{(x, v) \mid \exists t \in Vars. [(y, t) \in S \land (t, v) \in S]\} \\
F_{x:=y}(S) & = \text{let } V := \{v \mid (x, v) \in S\} \ \text{in} \\
& \quad \bigcup \{(v, t) \mid v \in V \land (y, t) \in S\}
\end{align*}
\]
Pointers to dynamically-allocated memory

- Handle statements of the form: `x := new T`
- One idea: generate a new variable each time the new statement is analyzed to stand for the new location:

\[
F_{x := new T}(S) = S - \text{kill}(x) \cup \{(x, \text{newvar}())\}
\]
Example

\[
\begin{align*}
 l & := \text{new Cons} \\
 p & := l \\
 t & := \text{new Cons} \\
 *p & := t \\
 p & := t
\end{align*}
\]
Example solved

\[
\begin{align*}
l & := \text{new Cons} \\
p & := l \\
t & := \text{new Cons} \\
*p & := t \\
p & := t
\end{align*}
\]
What went wrong?

• Lattice infinitely tall!

• We were essentially running the program

• Instead, we need to summarize the infinitely many allocated objects in a finite way

• **New Idea**: introduce summary nodes, which will stand for a whole class of allocated objects.
What went wrong?

• Example: For each new statement with label L, introduce a summary node loc_L, which stands for the memory allocated by statement L.

$$F_L: \ x:=\text{new} \ T(S) = S - \text{kill}(x) \cup \{(x, \text{loc}_L)\}$$

• Summary nodes can use other criterion for merging.
Example revisited

S1: \(l := \text{new Cons} \)

\[
\begin{align*}
p &:= l \\
*p &:= t \\
p &:= t
\end{align*}
\]
Example revisited & solved

<table>
<thead>
<tr>
<th>Iter 1</th>
<th>Iter 2</th>
<th>Iter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>l := new Cons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p := l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t := new Cons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*p := t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p := t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

```
S1: l := new Cons

S2: t := new Cons

* p := t
```

Iter 1
- l := new Cons
- p := l
- t := new Cons
- *p := t
- p := t

Iter 2
- l := new Cons
- p := l
- t := new Cons
- *p := t
- p := t

Iter 3
- l := new Cons
- p := l
- t := new Cons
- *p := t
- p := t

Symbols:
- S1
- S2
- l
- p
- t

Transformations:
- l → S1
- p → S2
- t → S3

Rules:
- x.t → S2
- t → S3
- l → S1
- p → S2
- t → S3

Output:
- l := new Cons
- p := l
- t := new Cons
- *p := t
- p := t
Array aliasing, and pointers to arrays

• Array indexing can cause aliasing:
 – $a[i]$ aliases $b[j]$ if:
 • a aliases b and $i = j$
 • a and b overlap, and $i = j + k$, where k is the amount of overlap.

• Can have pointers to elements of an array
 – $p := &a[i]; \ldots; p++;$

• How can arrays be modeled?
 – Could treat the whole array as one location.
 – Could try to reason about the array index expressions: array dependence analysis.
Fields

• Can summarize fields using per field summary
 – for each field F, keep a points-to node called F that summarizes all possible values that can ever be stored in F

• Can also use allocation sites
 – for each field F, and each allocation site S, keep a points-to node called (F, S) that summarizes all possible values that can ever be stored in the field F of objects allocated at site S.
Summary

• We just saw:
 – intraprocedural points-to analysis
 – handling dynamically allocated memory
 – handling pointers to arrays

• But, intraprocedural pointer analysis is not enough.
 – Sharing data structures across multiple procedures is one the big benefits of pointers: instead of passing the whole data structures around, just pass pointers to them (eg C pass by reference).
 – So pointers end up pointing to structures shared across procedures.
 – If you don’t do an interproc analysis, you’ll have to make conservative assumptions functions entries and function calls.
Conservative approximation on entry

• Say we don’t have interprocedural pointer analysis.

• What should the information be at the input of the following procedure:

```c
global g;
void p(x,y) {
    ...
}
```
Conservative approximation on entry

- Here are a few solutions:

```c
global g;
void p(x, y) {
    ...
}
```

- They are all very conservative!
- We can try to do better.
Interprocedural pointer analysis

- Main difficulty in performing interprocedural pointer analysis is scaling

- One can use a top-down summary based approach (Wilson & Lam 95), but even these are hard to scale
Example revisited

- Cost:
 - space: store one fact at each prog point
 - time: iteration

S1: \(l := \text{new Cons} \)

\[
P := l
\]

S2: \(t := \text{new Cons} \)

\[
*P := t
\]

\[
P := t
\]
New idea: store one dataflow fact

- Store one dataflow fact for the whole program
- Each statement updates this one dataflow fact
 - use the previous flow functions, but now they take the whole program dataflow fact, and return an updated version of it.
- Process each statement once, ignoring the order of the statements
- This is called a flow-insensitive analysis.
Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow sensitive vs. insensitive

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

Flow-sensitive Soln

Flow-insensitive Soln
What went wrong?

• What happened to the link between p and S1?
 – Can’t do strong updates anymore!
 – Need to remove all the kill sets from the flow functions.

• What happened to the self loop on S2?
 – We still have to iterate!
Flow insensitive pointer analysis: fixed

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow insensitive pointer analysis: fixed

This is Andersen's algorithm '94

S1: l := new Cons

Iter 1

l
p

S1

Iter 2

l
p

l
p

S1
S2

Iter 3

l
p

l
p

l
p

S1
S2

p := l

*p := t

p := t

p := t

Final result

p

l

S1

S2

This is Andersen's algorithm '94
Flow sensitive vs. insensitive, again

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Flow insensitive loss of precision

• Flow insensitive analysis leads to loss of precision!

```c
main() {
    x := &y;
    *x := &v
    ...
    x := &z;
}
```

Flow insensitive analysis tells us that x may point to z here!

• However:
 – uses less memory (memory can be a big bottleneck to running on large programs)
 – runs faster
In Class Exercise!

S1: \(p := \text{new Cons} \)

\[*p = q \]

S2: \(q := \text{new Cons} \)

\[r = \&q \]

\[*q = r \]

\[s = r \]

\[*r = s \]

\[*q = p \]

\[s = p \]
In Class Exercise! solved

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = \&q \)

\(*q = r \)

\(s = r \)

\(*q = p \)

\(s = p \)

\(*r = s \)
Worst case complexity of Andersen

Worst case: N^2 per statement, so at least N^3 for the whole program. Andersen is in fact $O(N^3)$
New idea: one successor per node

- Make each node have only one successor.
- This is an invariant that we want to maintain.
More general case for $x^* = y$
More general case for $^x y$
Handling: $x = *y$
Handling: $x = *y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = \&y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = \&y$
Our favorite example, once more!

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Our favorite example, once more!

S1: \(l := \text{new Cons} \)

1

\(p := l \)

2

S2: \(t := \text{new Cons} \)

3

\(*p := t \)

4

\(p := t \)

5
Flow insensitive loss of precision

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

Flow-sensitive
 Subset-based

Flow-insensitive
Subset-based

Flow-insensitive
Unification-based
Another example

bar() {
 1 i := &a;
 2 j := &b;
 3 foo(&i); p = &i
 4 foo(&j); p = &j
 // i pnts to what?
 *i := ...;
}

void foo(int* p) {
 printf("%d",*p);
}
Another example

bar() {
 ① i := &a;
 ② j := &b;
 ③ foo(&i);
 ④ foo(&j);
 // i pnts to what?
 *i := ...;
}

void foo(int* p) {
 printf("%d",*p);
}
Almost linear time

- Time complexity: $O(N \alpha(N, N))$

- So slow-growing, it is basically linear in practice

- For the curious: node merging implemented using UNION-FIND structure, which allows set union with amortized cost of $O(\alpha(N, N))$ per op. Take CSE 202 to learn more!
In Class Exercise!

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = &q \)

\(*q = r \)

\(*q = p \)

\(s = r \)

\(s = p \)

\(*r = s \)
In Class Exercise! solved

S1: p := new Cons

S2: q := new Cons

*p = q

r = &q

*q = r

*s = r

*q = p

s = p

*r = s

q, S1, s2

p

r

s

Steensgaard

p

S1

q

S2

r

s

Andersen
Advanced Pointer Analysis

• Combine flow-sensitive/flow-insensitive

• Clever data-structure design

• Context-sensitivity