Formalization of DFA using lattices

Recall worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ∅

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i]);
 if (m(n.outgoing_edges[i]) ≠ new_info)
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);

Using lattices

• We formalize our domain with a powerset lattice
• What should be top and what should be bottom?

Using lattices

• We formalize our domain with a powerset lattice
• What should be top and what should be bottom?
• Does it matter?
 – It matters because, as we’ve seen, there is a notion of approximation, and this notion shows up in the lattice

Using lattices

• Unfortunately:
 – dataflow analysis community has picked one direction
 – abstract interpretation community has picked the other
• We will work with the abstract interpretation direction
• Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)

Direction of lattice

• Always safe to go up in the lattice
• Can always set the result to T
• Hard to go down in the lattice
• So … Bottom will be the empty set in reaching defs
Worklist algorithm using lattices

\begin{verbatim}
let m: map from edge to computed value at edge
let worklist: work list of nodes
for each edge e in CFG do
 m(e) := ⊥
for each node n do
 worklist.add(n)
while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i])
 info_out[i] := new_info;
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
\end{verbatim}

Termination of this algorithm?

- For reaching definitions, it terminates...
- Why?
 - lattice is finite
- Can we loosen this requirement?
 - Yes, we only require the lattice to have a finite height
- Height of a lattice: length of the longest ascending or descending chain
- Height of lattice \((2^S, ⊆) = | S |\)

Termination

• Still, it’s annoying to have to perform a join in the worklist algorithm

\begin{verbatim}
while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i])
 info_out[i] := new_info;
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
\end{verbatim}

• It would be nice to get rid of it, if there is a property of the flow functions that would allow us to do so

Even more formal

• To reason more formally about termination and precision, we re-express our worklist algorithm mathematically

• We will use fixed points to formalize our algorithm

Fixed points

• Recall, we are computing m, a map from edges to dataflow information

• Define a global flow function F as follows: F takes a map m as a parameter and returns a new map m’, in which individual local flow functions have been applied
Fixed points

- We want to find a fixed point of F, that is to say a map m such that $m = F(m)$
- Approach to doing this?
 - Define $\tilde{\bot}$, which is \bot lifted to be a map: $\tilde{\bot} = \lambda \varepsilon. \bot$
 - Compute $F(\tilde{\bot})$, then $F(F(\tilde{\bot}))$, then $F(F(F(\tilde{\bot})))$, ... until the result doesn’t change anymore

Fixed points

- Formally:
 $$S_{\text{down}} = \bigsqcup_{i=0}^{\infty} F^i(\tilde{\bot})$$
 - We would like the sequence $F^i(\tilde{\bot})$ for $i = 0, 1, 2$... to be increasing, so we can get rid of the outer join
 - Require that F be monotonic:
 - $\forall a, b . a \sqsubseteq b \Rightarrow F(a) \sqsubseteq F(b)$

Fixed points

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
 - Then:

Back to termination

- So if F is monotonic, we have what we want: finite height \Rightarrow termination, without the outer join
- Also, if the local flow functions are monotonic, then global flow function F is monotonic

Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
 - Then:
Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
- Then:

 \[\overline{F(I)} \subseteq F(fp) \]
 \[F(I) \subseteq fp \]
 \[F^{-1}(I) \subseteq I \]
 \[\overline{fp} \subseteq I \]

Another benefit of monotonicity

- We are computing the least fixed point...

Recap

- Let’s do a recap of what we’ve seen so far
- Started with worklist algorithm for reaching definitions

Generalized algorithm using lattices

```plaintext
let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
    m(e) := \_ 

for each node n do
    worklist.add(n)

while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length do
        let new_info := m(n.outgoing_edges[i])
        if (m(n.outgoing_edges[i]) \neq new_info)
            m(n.outgoing_edges[i]) := new_info;
        worklist.add(n.outgoing_edges[i].dst); 
```

Next step: removed outer join

- Wanted to remove the outer join, while still providing termination guarantee
- To do this, we re-expressed our algorithm more formally
- We first defined a "global" flow function F, and then expressed our algorithm as a fixed point computation

Worklist algorithm for reaching defns

```plaintext
let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
    m(e) := \$

for each node n do
    worklist.add(n)

while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length do
        let new_info := m(n.outgoing_edges[i])
        if (m(n.outgoing_edges[i]) \neq new_info)
            m(n.outgoing_edges[i]) := new_info;
        worklist.add(n.outgoing_edges[i].dst); 
```
Guarantees

- If \(F \) is monotonic, don’t need outer join
- If \(F \) is monotonic and height of lattice is finite: iterative algorithm terminates
- If \(F \) is monotonic, the fixed point we find is the least fixed point.

What about if we start at top?

- What if we start with \(\top: F(\top), F(F(\top)), F(F(F(\top))) \)
- We get the greatest fixed point
- Why do we prefer the least fixed point?
 - More precise

Graphically
Graphically, another way