Formalization of DFA using lattices

Recall worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ∅

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i])
 [info_out[i]];
 if (m(n.outgoing_edges[i]) ≠ new_info)
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);

Using lattices

• We formalize our domain with a powerset lattice
• What should be top and what should be bottom?

Using lattices

• We formalize our domain with a powerset lattice
• What should be top and what should be bottom?
• Does it matter?
 – It matters because, as we’ve seen, there is a notion of approximation, and this notion shows up in the lattice

Using lattices

• Unfortunately:
 – dataflow analysis community has picked one direction
 – abstract interpretation community has picked the other
• We will work with the abstract interpretation direction
• Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)

Direction of lattice

• Always safe to go up in the lattice
• Can always set the result to T
• Hard to go down in the lattice
• So … Bottom will be the empty set in reaching defs
Worklist algorithm using lattices

```plaintext
let m: map from edge to computed value at edge
let worklist: work list of nodes
for each edge e in CFG do
  m(e) := ⊥
for each node n do
  worklist.add(n)
while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length do
    let new_info := m(n.outgoing_edges[i])
    info_out[i];
    if (m(n.outgoing_edges[i]) ≠ new_info)
      m(n.outgoing_edges[i]) := new_info;
      worklist.add(n.outgoing_edges[i].dst);
```

Termination of this algorithm?

- For reaching definitions, it terminates...
- Why?
 - lattice is finite
- Can we loosen this requirement?
 - Yes, we only require the lattice to have a finite height
- Height of a lattice: length of the longest ascending or descending chain
- Height of lattice \((2^S, \subseteq) = |S| \)

Even more formal

- To reason more formally about termination and precision, we re-express our worklist algorithm mathematically
- We will use fixed points to formalize our algorithm

Termination

- Still, it's annoying to have to perform a join in the worklist algorithm

```plaintext
while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length do
    let new_info := m(n.outgoing_edges[i])
    info_out[i];
    if (m(n.outgoing_edges[i]) ≠ new_info)
      m(n.outgoing_edges[i]) := new_info;
      worklist.add(n.outgoing_edges[i].dst);
```

Fixed points

- Recall, we are computing m, a map from edges to dataflow information
- Define a global flow function F as follows: F takes a map m as a parameter and returns a new map m', in which individual local flow functions have been applied
Fixed points

• We want to find a fixed point of F, that is to say a map m such that $m = F(m)$

• Approach to doing this?
 • Define $\tilde{\bot}$, which is \bot lifted to be a map:
 $\tilde{\bot} = \lambda \varepsilon. \bot$
 • Compute $F(\tilde{\bot})$, then $F(F(\tilde{\bot}))$, then $F(F(F(\tilde{\bot})))$, ... until the result doesn’t change anymore

Fixed points

• Formally:
 $$\text{Seq} = \left\{ \frac{F(\tilde{\bot})}{\bot} \right\} \cup \{ F(\tilde{\bot}), F(F(\tilde{\bot})), \ldots \}$$

• We would like the sequence $F(\tilde{\bot})$ for $i = 0, 1, 2$... to be increasing, so we can get rid of the outer join
 • Require that F be monotonic:
 $$\forall a, b . a \sqsubset b \Rightarrow F(a) \sqsubset F(b)$$

Fixed points

• $\alpha \in \ell
 \Rightarrow F(\alpha) \in \ell$

• $F(\ell \cup \ell) = \ell \cup F(\ell)$

• $F(\ell \cap \ell) = \ell \cap F(\ell)$

• $F^k(\ell \cup \ell) \subseteq F^{k+1}(\ell)
 \text{ for all } k = 0, 1, 2, \ldots$

• $F^k(\ell \cap \ell) \subseteq F^{k+1}(\ell)
 \text{ for all } k = 0, 1, 2, \ldots$

Back to termination

• So if F is monotonic, we have what we want: finite height \Rightarrow termination, without the outer join

• Also, if the local flow functions are monotonic, then global flow function F is monotonic

Another benefit of monotonicity

• Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
 • Then:
 $$\tilde{\bot} \subseteq F^k(fp)
 \Rightarrow F(\tilde{\bot}) \subseteq F(fp)
 \Rightarrow FF(\tilde{\bot}) \subseteq FF(fp)
 \Rightarrow OF \subseteq OF$$
Another benefit of monotonicity

• Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.

• Then:

 \[
 \begin{align*}
 \tilde{x} & \in fp \\
 F(\tilde{x}) & \in F(fp) \\
 F^2(\tilde{x}) & \in fp \\
 \sigma x & \in \sigma fp
 \end{align*}
 \]

Recap

• Let’s do a recap of what we’ve seen so far

• Started with worklist algorithm for reaching definitions

Worklist algorithm for reaching defns

```plaintext
let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
  m(e) := \$

for each node n do
  worklist.add(n)

while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length do
    let new_info := m(n.outgoing_edges[i])
      \[ info_out[i] \]
    if (m(n.outgoing_edges[i]) \neq new_info)
      m(n.outgoing_edges[i]) := new_info;
    worklist.add(n.outgoing_edges[i].dst);
```

Generalized algorithm using lattices

```plaintext
let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
  m(e) := \$

for each node n do
  worklist.add(n)

while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length do
    let new_info := m(n.outgoing_edges[i])
      \[ info_out[i] \]
    if (m(n.outgoing_edges[i]) \neq new_info)
      m(n.outgoing_edges[i]) := new_info;
    worklist.add(n.outgoing_edges[i].dst);
```

Next step: removed outer join

• Wanted to remove the outer join, while still providing termination guarantee

• To do this, we re-expressed our algorithm more formally

• We first defined a "global" flow function F, and then expressed our algorithm as a fixed point computation
Guarantees

• If F is monotonic, don’t need outer join
• If F is monotonic and height of lattice is finite: iterative algorithm terminates
• If F is monotonic, the fixed point we find is the least fixed point.

What about if we start at top?

• What if we start with \(\top \): \(F(\top), F(F(\top)), F(F(F(\top))) \)
• We get the greatest fixed point
• Why do we prefer the least fixed point?
 – More precise
Graphically, another way