Background material

Relations

- A relation over a set S is a set \(R \subseteq S \times S \)
 - We write \(a R b \) for \((a, b) \in R\)
- A relation \(R \) is:
 - reflexive iff
 \[\forall a \in S : a R a \]
 - transitive iff
 \[\forall a \in S, b \in S, c \in S : a R b \land b R c \Rightarrow a R c \]
 - symmetric iff
 \[\forall a, b \in S : a R b \Rightarrow b R a \]
 - anti-symmetric iff
 \[\forall a, b \in S : a R b \Rightarrow \neg (b R a) \]

Partial orders

- An equivalence class is a relation that is:
 - reflexive, transitive, symmetric
- A partial order is a relation that is:

Partial orders

- An equivalence class is a relation that is:
 - reflexive, transitive, symmetric
- A partial order is a relation that is:
- A partially ordered set (a poset) is a pair \((S, \leq)\) of
 a set \(S\) and a partial order \(\leq\) over the set
- Examples of posets: \((2^S, \subseteq), (Z, \leq), (Z, \text{divides})\)

Lub and glb

- Given a poset \((S, \leq)\), and two elements \(a \in S \) and \(b \in S \), then the:
 - least upper bound (lub) is an element \(c \) such that
 \[a \leq c, b \leq c, \text{ and } \forall d \in S : (a \leq d \land b \leq d) \Rightarrow c \leq d \]
 - greatest lower bound (glb) is an element \(c \) such that
 \[c \leq a, c \leq b, \text{ and } \forall d \in S : (d \leq a \land d \leq b) \Rightarrow d \leq c \]
Lub and glb

• Given a poset (S, \leq), and two elements $a \in S$ and $b \in S$, then the:
 – least upper bound (lub) is an element c such that $a \leq c$, $b \leq c$, and $\forall d \in S : (a \leq d \land b \leq d) \Rightarrow c \leq d$
 – greatest lower bound (glb) is an element c such that $c \leq a$, $c \leq b$, and $\forall d \in S : (d \leq a \land d \leq b) \Rightarrow d \leq c$
• lub and glb don’t always exists:

Lattices

• A lattice is a tuple $(S, \sqsubseteq, \sqcup, \sqcap, 0, 1)$ such that:
 – (S, \sqsubseteq) is a poset
 – $\forall a \in S : \bot \sqsubseteq a$
 – $\forall a \in S : a \sqsubseteq \top$
 – Every two elements from S have a lub and a glb
 – \sqcup is the least upper bound operator, called a join
 – \sqcap is the greatest lower bound operator, called a meet

Examples of lattices

• Powerset lattice

Examples of lattices

• Boolean expressions
Examples of lattices

- Booleans expressions

Examples of lattices

- Booleans expressions

Examples of lattices

- Booleans expressions