Dataflow analysis
Dataflow analysis: what is it?

• A common framework for expressing algorithms that compute information about a program

• Why is such a framework useful?
Dataflow analysis: what is it?

• A common framework for expressing algorithms that compute information about a program

• Why is such a framework useful?

• Provides a common language, which makes it easier to:
 – communicate your analysis to others
 – compare analyses
 – adapt techniques from one analysis to another
 – reuse implementations (eg: dataflow analysis frameworks)
Control Flow Graphs

• For now, we will use a Control Flow Graph representation of programs
 – each statement becomes a node
 – edges between nodes represent control flow

• Later we will see other program representations
 – variations on the CFG (eg CFG with basic blocks)
 – other graph based representations
Example CFG

```plaintext
x := ...
y := ...
y := ...
p := ...
if (...) {
    ...
    x ...
    x := ...
    ...
    y ...
}
else {
    ...
    x ...
    x := ...
    *p := ...
}
... x ...
... y ...
y := ...
```
An example DFA: reaching definitions

- For each use of a variable, determine what assignments could have set the value being read from the variable.

- Information useful for:
 - performing constant and copy prop
 - detecting references to undefined variables
 - presenting “def/use chains” to the programmer
 - building other representations, like the DFG

- Let’s try this out on an example
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := 10 \)
4: \(p := f() \)

5: \(x := \ldots \)
6: \(x := \ldots \)
7: \(*p := \ldots \)

8: \(y := \ldots \)
Safety

• When is computed info safe?

• Recall intended use of this info:
 – performing constant and copy prop
 – detecting references to undefined variables
 – presenting “def/use chains” to the programmer
 – building other representations, like the DFG

• Safety:
 – can have more bindings than the “true” answer, but can’t miss any
Reaching definitions generalized

• DFA framework geared to computing information at each program point (edge) in the CFG
 – So generalize problem by stating what should be computed at each program point

• For each program point in the CFG, compute the set of definitions (statements) that may reach that point

• Notion of safety remains the same
Reaching definitions generalized

- Computed information at a program point is a set of var \rightarrow stmt bindings
 - eg: $\{ x \rightarrow s_1, x \rightarrow s_2, y \rightarrow s_3 \}$

- How do we get the previous info we wanted?
 - if a var x is used in a stmt whose incoming info is in, then:
Reaching definitions generalized

• Computed information at a program point is a set of var → stmt bindings
 – eg: \{ x → s_1, x → s_2, y → s_3 \}

• How do we get the previous info we wanted?
 – if a var x is used in a stmt whose incoming info is \textit{in}, then: \{ s \mid (x → s) ∈ \textit{in} \}

• This is a common pattern
 – generalize the problem to define what information should be computed at each program point
 – use the computed information at the program points to get the original info we wanted
1: \(x := \ldots\)
2: \(y := \ldots\)
3: \(y := \ldots\)
4: \(p := _p^\perp.\)

5: \(x := \ldots\)
6: \(x := \ldots\)
7: \(*p := \ldots\)
8: \(y := \ldots\)
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

5: \(x := \ldots \)
6: \(x := \ldots \)
7: \(*p := \ldots \)
8: \(y := \ldots \)
Using constraints to formalize DFA

• Now that we’ve gone through some examples, let’s try to precisely express the algorithms for computing dataflow information

• We’ll model DFA as solving a system of constraints

• Each node in the CFG will impose constraints relating information at predecessor and successor points

• Solution to constraints is result of analysis
Constraints for reaching definitions

\[\begin{align*}
&\text{in} \\
S: &\ X := \ldots \\
&\text{out} \\

&\text{in} \\
S: &\ *P := \ldots \\
&\text{out} \\
\end{align*} \]

\[\text{out} = \text{in} - \{ x \mapsto * \} \bigcup \left(\left\{ x \mapsto S \right\} \bigcup \left[\text{may-pt}(P) \right] \right) \]

\[\text{out} = \text{im} \bigcup \left\{ \left\{ x \mapsto S \right\} \bigcap \left\{ x \in \text{may-pt}(P) \right\} \bigcup \left\{ x \mapsto * \right\} \bigcap \left\{ x \in \text{mut-pt}(P) \right\} \right\} \]
Constraints for reaching definitions

- Using may-point-to information:
 \[\text{out} = \text{in} - \{ X \rightarrow S' | S' \in \text{stmts} \} \cup \{ X \rightarrow S \} \]

- Using must-point-to as well:
 \[\text{out} = \text{in} - \{ X \rightarrow S' | X \in \text{must-point-to}(P) \} \wedge \{ X \rightarrow S | X \in \text{may-point-to}(P) \} \]

\[
\begin{array}{c}
\text{in}
\end{array}
\begin{array}{c}
S: X := \ldots
\end{array}
\begin{array}{c}
\text{out}
\end{array}
\]

\[
\begin{array}{c}
\text{in}
\end{array}
\begin{array}{c}
S: *P := \ldots
\end{array}
\begin{array}{c}
\text{out}
\end{array}
\]

\[
\begin{array}{c}
S: X := \ldots
\end{array}
\begin{array}{c}
\text{out} = \text{in} - \{ X \rightarrow S' | S' \in \text{stmts} \} \cup \{ X \rightarrow S \}
\end{array}
\]

\[
\begin{array}{c}
S: *P := \ldots
\end{array}
\begin{array}{c}
\text{out} = \text{in} \cup \{ X \rightarrow S | X \in \text{may-point-to}(P) \}
\end{array}
\]

\[
\begin{array}{c}
\text{out} = \text{in} - \{ X \rightarrow S' | X \in \text{must-point-to}(P) \} \wedge \{ X \rightarrow S | X \in \text{may-point-to}(P) \}
\end{array}
\]
Constraints for reaching definitions

\[
S: \text{if (\ldots)}
\]

\[
\text{if } (*p = 3) \}
\]
Constraints for reaching definitions

\[
\text{S: if (\ldots)}
\]

\[
\begin{align*}
\text{out}[0] & = \text{in} \\
\text{out}[1] & = \text{in} \\
\end{align*}
\]

more generally: \(\forall i . \text{out}[i] = \text{in} \)

\[
\begin{align*}
\text{merge} \\
\text{out} \\
\end{align*}
\]

\[
\begin{align*}
\text{out} & = \text{in}[0] \cup \text{in}[1] \\
\end{align*}
\]

more generally: \(\text{out} = \bigcup_i \text{in}[i] \)
Flow functions

- The constraint for a statement kind s often have the form: $\text{out} = F_s(\text{in})$

- F_s is called a flow function
 - other names for it: dataflow function, transfer function

- Given information in before statement s, $F_s(\text{in})$ returns information after statement s

- Other formulations have the statement s as an explicit parameter to F: given a statement s and some information in, $F(s,\text{in})$ returns the outgoing information after statement s
Flow functions, some issues

• Issue: what does one do when there are multiple input edges to a node?

• Issue: what does one do when there are multiple outgoing edges to a node?
Flow functions, some issues

• Issue: what does one do when there are multiple input edges to a node?
 – the flow functions takes as input a tuple of values, one value for each incoming edge

• Issue: what does one do when there are multiple outgoing edges to a node?
 – the flow function returns a tuple of values, one value for each outgoing edge
 – can also have one flow function per outgoing edge
Flow functions

• Flow functions are a central component of a dataflow analysis

• They state constraints on the information flowing into and out of a statement

• This version of the flow functions is local
 – it applies to a particular statement kind
 – we’ll see global flow functions shortly...
Summary of flow functions

• Flow functions: Given information \(in \) before statement \(s \), \(F_s(in) \) returns information after statement \(s \)

• Flow functions are a central component of a dataflow analysis

• They state constraints on the information flowing into and out of a statement
How to find solutions for d_i?
How to find solutions for d_i?

• This is a forward problem
 – given information flowing *in* to a node, can determine using the flow function the info flow *out* of the node

• To solve, simply propagate information forward through the control flow graph, using the flow functions

• What are the problems with this approach?
First problem

1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

\[\text{if}(\ldots) \]

\(d_9 = F_f(d_4) \)

5: \(x := \ldots \)
6: \(x := \ldots \)

\(d_{10} = F_j(d_9) \)
\(d_{11} = F_k(d_{10}) \)
\(d_{12} = F_l(d_{11}) \)

7: \(*p := \ldots \)

\(d_6 = F_g(d_5) \)
\(d_7 = F_h(d_6) \)
\(d_8 = F_i(d_7) \)

What about the incoming information?
First problem

• What about the incoming information?
 – d_0 is not constrained
 – so where do we start?

• Need to constrain d_0

• Two options:
 – explicitly state entry information
 – have an entry node whose flow function sets the information on entry (doesn’t matter if entry node has an incoming edge, its flow function ignores any input)
Entry node

\[
S : \text{entry} \\
\downarrow out\\
\text{out} = \{ X \rightarrow S \mid X \in \text{Formals} \}
\]
Second problem

Which order to process nodes in?
Second problem

• Which order to process nodes in?

• Sort nodes in topological order
 – each node appears in the order after all of its predecessors

• Just run the flow functions for each of the nodes in the topological order

• What’s the problem now?
Second problem, prime

• When there are loops, there is no topological order!
• What to do?
• Let’s try and see what we can do
1: x := ...
2: y := ...
3: y := ...
4: p := ...

5: x := ...
... y ...

6: x := ...
... y ...
7: *p := ...

8: y := ...
... x ...
... y ...
... x ...
... y ...
... x ...
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

5: \(x := \ldots \)
 \(y := \ldots \)
6: \(x := \ldots \)
 \(*p := \ldots \)
7: \(y := \ldots \)

\(\{ x \rightarrow 1 \} \)
\(\{ x \rightarrow 1, y \rightarrow 2 \} \)
\(\{ x \rightarrow 1, y \rightarrow 3 \} \)
\(\{ x \rightarrow 1, y \rightarrow 3, p \rightarrow 4 \} \)
\(\{ x \rightarrow 1, y \rightarrow 3, p \rightarrow 4 \} \)
\(\{ x \rightarrow 1, y \rightarrow 3, p \rightarrow 4 \} \)
\(\{ x \rightarrow 1, y \rightarrow 3, p \rightarrow 4 \} \)

\(\{ x \rightarrow 1, x \rightarrow 5, x \rightarrow 7, y \rightarrow 3, y \rightarrow 7, p \rightarrow 2, p \rightarrow 7 \} \)

\(\ldots \)
Worklist algorithm

• Initialize all d_i to the empty set
• Store all nodes onto a worklist
• while worklist is not empty:
 – remove node n from worklist
 – apply flow function for node n
 – update the appropriate d_i, and add nodes whose inputs have changed back onto worklist
Worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ∅

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length-1 do
 if (m(n.outgoing_edges[i]) ≠ info_out[i])
 m(n.outgoing_edges[i]) := info_out[i];
 worklist.add(n.outgoing_edges[i].dst);
Issues with worklist algorithm
Two issues with worklist algorithm

• Ordering
 – In what order should the original nodes be added to the worklist?
 – What order should nodes be removed from the worklist?

• Does this algorithm terminate?
Order of nodes

- Topological order assuming back-edges have been removed
- Reverse depth-first post-order
- Use an ordered worklist
1: x := ...
2: y := ...
3: y := ...
4: p := ...
5: x := ...
6: x := ...
7: *p := ...
8: y := ...
Termination

• Why is termination important?

• Can we stop the algorithm in the middle and just say we’re done...

• No: we need to run it to completion, otherwise the results are not safe...
Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does.

```plaintext
while (worklist.empty.not) do
    let $n := \text{worklist.remove\_any}$;
    let $\text{info\_in} := m(n.\text{incoming\_edges})$;
    let $\text{info\_out} := F(n, \text{info\_in})$;
    for $i := 0 .. \text{info\_out.length\-1}$ do
        if $(m(n.\text{outgoing\_edges}[i]) \neq \text{info\_out}[i])$
            $m(n.\text{outgoing\_edges}[i]) := \text{info\_out}[i]$;
            $\text{worklist.add}(n.\text{outgoing\_edges}[i].\text{dst})$;
```
Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does.

```plaintext
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length-1 do
        let new_info := m(n.outgoing_edges[i]) ∪ info_out[i];
        if (m(n.outgoing_edges[i]) ≠ new_info)
            m(n.outgoing_edges[i]) := new_info;
        worklist.add(n.outgoing_edges[i].dst);
```
Structure of the domain

• We’re using the structure of the domain outside of the flow functions

• In general, it’s useful to have a framework that formalizes this structure

• We will use lattices