
CSE 202: Algorithm Design and Analysis Spring 2015

Problem Set 1

Instructor: Fan Chung Graham Due on: Wed April 15

Instructions

� For your proofs, you may use any lower bound, algorithm or data structure from the text or in class,
and their correctness and analysis, but please cite the result that you use.

� If you do not prove that your algorithm is correct, we will assume that it is incorrect. If you do not
provide an analysis of the running time, we will assume you do not know what the running time is.

Problem 1

The following statements may or may not be correct. For each statement, if it is correct, provide a short
proof of correctness. If it is incorrect, provide a counter-example to show that it is incorrect. In the following,
assume that the graph G = (V;E) is undirected and connected. Do not assume that all the edge weights are
unique unless stated.

1. If G has more than jV j � 1 edges, and there is a unique heaviest edge e, then e cannot be part of any
minimum spanning tree of G.

2. The worst case time for a �nd operation in the Union-Find data structure can be �(log n) even with
path compression.

3. A lightest edge in a cut is present in all minimum spanning trees of G.

4. If e is a heaviest edge in a cycle, then e cannot occur in any minimum spanning tree of G.

5. Prim's algorithm works correctly when some of the edge weights are negative.

Grading: Each subproblem is worth 4 points: 2 points for correctly answering True or False, 2 points for a

proof or counterexample.

Problem 2

Given a list of n positive integers d1; d2; : : : ; dn, we want to e�ciently determine whether there exists an
undirected graph G = (V;E) whose nodes have degrees precisely d1; : : : ; dn. That is, if V = fv1; : : : ; vng,
then the degree of vi should be exactly di. We call (d1; : : : ; dn) the degree sequence of G. This graph G
should not contain self-loops (edges with both endpoints equal to the same node) or multiple edges between
the same pair of nodes.

1. Give an example of d1; d2; d3; d4 where all the di � 3 and d1 + d2 + d3 + d4 is even, but for which no
graph with degree sequence (d1; d2; d3; d4) exists.
Grading: 5 points

2. Suppose that d1 � d2 � : : : � dn and that there exists a graph G = (V;E) with degree sequence
(d1; : : : ; dn). We want to show that there must exist a graph that has this degree sequence and where
in addition the neighbors of v1 are v2; v3; : : : ; vd1+1. The idea is to gradually transform G into a graph
with the desired additional property.

(a) Suppose the neighbors of v1 in G are not v2; v3; : : : ; vd1+1. Show that there exists i < j � n and
u 2 V such that (v1; vi); (u; vj) =2 E and (v1; vj); (u; vi) 2 E.



(b) Specify the changes you would make to G to obtain a new graph G0 = (V;E0) same degree
sequence as G and where (v1; vi) 2 E.

(c) Now show that there must be a graph with the given degree sequence but in which v1 has neighbors
v2; v3; : : : ; vd1+1.

Grading: 10 points

3. Using the result from part (2), describe an algorithm that on input d1; : : : ; dn (not necessarily sorted)
decides whether there exists a graph with this degree sequence. Your algorithm should run in time
polynomial in n and in m =

Pn

i=1 di.
Grading: 5 points � make sure to include runtime analysis!

Problem 3

Consider the tra�c camera problem: the police department would like to set up tra�c cameras to catch
tra�c o�enders on every road. However, the department budget is being cut, and there is not enough money
to place a camera at every intersection. Fortunately there is no need to place cameras at every intersection
because a camera placed at an intersection can monitor all roads adjacent to this intersection. Given a
network of roads, the tra�c camera problem is to �nd the minimum number of tra�c cameras that need to
be placed at intersections (as well as the intersections where we need to place these cameras) such that all
roads can be monitored. (Note that each road is adjacent to two intersections, one at each end.)

1. First, write down a graph-theoretic formulation of the problem. Do not forget to completely specify
the inputs, any speci�c constraints, and the required outputs.
Grading: 6 points for all required components

2. Below is a greedy algorithm for this problem. Does this algorithm work correctly? If so, write down a
proof of correctness. If not, write down a counterexample.

1: Initialize: Intersection set S = ;. Road set R is the set of all roads.
2: while R is non-empty do
3: Pick an arbitrary road r 2 R, and pick an intersection v adjacent to r. Add v to S.
4: Delete from R all roads r0 that are adjacent to v.
5: end while

6: Output S.

Grading: 7 points: 3 points for correctly answering whether the algorithm works, 4 points for a proof

of correctness or counterexample

3. Suppose we modify the greedy algorithm to the algorithm below. Does this algorithm work correctly? If
yes, write down a proof of correctness. If not, write down a counterexample.

1: Initialize: Intersection set S = ;. Road set R is the set of all roads.
2: while R is non-empty do
3: Pick an intersection v from the set of intersections that is adjacent to the maximum number of

roads in R. Add v to S.
4: Delete from R all roads r0 that are adjacent to v.
5: end while

6: Output S.

Grading: 7 points: 3 points for correctly answering whether the algorithm works, 4 points for a proof

of correctness or counterexample


