Image Formation and Cameras (Part 2)

Introduction to Computer Vision
CSE 152
Lecture 5

Announcements

• Homework 1 is due Apr 24, 11:59 PM
• Wait list
• Reading:
 – Chapter 2 Image formation

The equation of projection

Cartesian coordinates:

\[(x, y, z) \rightarrow \left(\frac{x}{f}, \frac{y}{f}, \frac{z}{f} \right) \]

Homogenous Coordinates and Camera matrix

\[
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & \frac{1}{f} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

What if camera coordinate system differs from object coordinate system

Euclidean Coordinate Systems

\[
\begin{align*}
 x &= \overrightarrow{OP}.i \\
 y &= \overrightarrow{OP}.j \\
 z &= \overrightarrow{OP}.k
\end{align*}
\]

\[\overrightarrow{OP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \]

\[\mathbf{P} =
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Coordinate Changes: Pure Translations

\[
\begin{align*}
 \overrightarrow{O_bP} &= \overrightarrow{O_aP} + \overrightarrow{O_aO_b} \\
 \overrightarrow{O_bP} &= \overrightarrow{O_aP} + \mathbf{t}
\end{align*}
\]

Translation from coordinate frame A to coordinate frame B
Rotation Matrix

Dot Products between all pairs of coordinate axis of both systems

\[R = \begin{bmatrix} i_A & i_B & k_A & k_B \\ i_A & i_B & k_A & k_B \\ j_A & j_B & k_A & k_B \end{bmatrix} = \begin{bmatrix} i_A & i_B & k_A & k_B \end{bmatrix} \begin{bmatrix} i_A & i_B & k_A & k_B \end{bmatrix} \]

Coordinate Changes: Pure Rotations

Rotation from coordinate frame A to coordinate frame B

\[\overrightarrow{OP} = \begin{bmatrix} x_A \\ y_A \\ z_A \end{bmatrix} = \begin{bmatrix} i_A & j_A & k_A \end{bmatrix} \begin{bmatrix} x_B \\ y_B \\ z_B \end{bmatrix} \]

\[\Rightarrow P_B = \begin{bmatrix} i_A & j_A & k_A \end{bmatrix} P_A = R P_A \]

Coordinate Changes: Euclidean Transformations

Euclidean transformation from coordinate frame A to coordinate frame B

\[P_B = R P_A + t \]

3D Rotation Matrices

- \(R^T = R^{-1} \)
- \(R^T R = R R^T = I \)
- \(\det(R) = 1 \)
- \(R_{ij} \in [-1, +1] \)
- Rows (or columns) of \(R \) form a right-handed orthonormal coordinate system
- Even though a rotation matrix is 3x3 with nine numbers, it only has three degrees of freedom, it can be parameterized with three numbers. There are many parameterizations

Rotation: Homogenous Coordinates

- About z axis

\[\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]

- About x axis:

\[\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]

- About y axis:

\[\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]
Composition of Rotations

\[
(\mathbf{R}_j \cdot \mathbf{R}_k) \cdot \mathbf{R}_i = \mathbf{R}_i \cdot (\mathbf{R}_j \cdot \mathbf{R}_k)
\]

Roll-Pitch-Yaw

\[
R = \text{rot}(\mathbf{j}, \alpha) \cdot \text{rot}(\mathbf{j}, \beta) \cdot \text{rot}(\mathbf{k}, \phi)
\]

Euclidean Transformations, Homogeneous Coordinates

\[
\begin{bmatrix}
P_x \\
P_y \\
P_z \\
1
\end{bmatrix} = \begin{bmatrix}
R & t \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
P_x' \\
P_y' \\
P_z' \\
1
\end{bmatrix}
\]

where

\[
c = \cos \theta \quad \text{and} \quad s = \sin \theta
\]

What if camera coordinate system differs from object coordinate system

\[
E_{cw} = \begin{bmatrix}
R & t \\
0^T & 1
\end{bmatrix}
\]

Intrinsic parameters

- 3x3 homogenous matrix
- Focal length:
- Principal Point: C'
- Units (e.g. pixels)
- Orientation and position of image coordinate system
- Pixel Aspect ratio
Camera parameters

- Extrinsic Parameters: Since camera may not be at the origin, there is a rigid transformation between the world coordinates and the camera coordinates.
- Intrinsic parameters: Since scene units (e.g., cm) differ image units (e.g., pixels) and coordinate system may not be centered in image, we capture that with a 3x3 transformation comprised of focal length, principal point, pixel aspect ratio, angle between axes, etc.

\[
\begin{bmatrix}
U \\
V \\
W
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & X \\
0 & 1 & 0 & Y \\
0 & 0 & 1 & Z
\end{bmatrix}
\begin{bmatrix}
E \\
F \\
G
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

Extrinsic parameters: 4 x 4

Intrinsic parameters: 3 x 3

Camera Calibration

Given \(n \) points \(P_1, \ldots, P_n \) with known positions and their images \(p_1, \ldots, p_n \), estimate intrinsic and extrinsic camera parameters.

- See Text book for how to do it.
- Camera Calibration Toolbox for Matlab (Bouguet)
 - http://www.vision.caltech.edu/bouguetj/calib_doc/

Beyond the pinhole Camera

Getting more light – Bigger Aperture

The reason for lenses

We need light, but big pinholes cause blur.

Thin Lens

- Rotationally symmetric about optical axis.
- Spherical interfaces.
Thin Lens: Center

- All rays that enter lens along line pointing at \(O \) emerge in same direction.

Thin Lens: Focus

Parallel lines pass through the focus, \(F \).

Thin Lens: Image of Point

- All rays passing through lens and starting at \(P \) converge upon \(P' \)
- So light gather capability of lens is given the area of the lens and all the rays focus on \(P' \) instead of become blurred like a pinhole

\[
\frac{1}{z'} + \frac{1}{z} = \frac{1}{f}
\]

Relation between depth of Point (\(Z \)) and the depth where it focuses (\(Z' \))

Thin Lens: Image Plane

A price: Whereas the image of \(P \) is in focus, the image of \(Q \) isn’t.

Thin Lens: Aperture

- Smaller Aperture -> Less Blur
- Pinhole -> No Blur
Field of view is a function of \(f \) and size of image plane.

Deviations from this ideal are **aberrations**

Two types

1. geometrical
 - spherical aberration
 - astigmatism
 - distortion
 - coma

2. chromatic
 Aberrations are reduced by combining lenses
 - Compound lenses

Spherical aberration

Rays parallel to the axis do not converge

Outer portions of the lens yield smaller focal lengths

Astigmatism

An optical system with astigmatism is one where rays that propagate in two perpendicular planes have different focus. If an optical system with astigmatism is used to form an image of a cross, the vertical and horizontal lines will be in sharp focus at two different distances.

Distortion

Magnification/focal length different for different angles of inclination

Can be corrected! (if parameters are known)

Chromatic aberration

(great for prisms, bad for lenses)
Chromatic aberration

rays of different wavelengths focused in different planes
cannot be removed completely

Vignetting

– Only part of the light reaches the sensor
– Periphery of the image is dimmer