Lecture 6: Reliable Transmission

CSE 123: Computer Networks
Stefan Savage

HW 1 due on Wed
Notice

- My office hours changing to 4pm on Tuesday
Lecture 6 Overview

- Finishing Error Detection
 - Cyclic Remainder Check (CRC)

- Handling errors
 - Automatic Repeat Request (ARQ)
 - Acknowledgements (ACKs) and timeouts
 - Stop-and-Wait
Checksums are easy to compute, but very fragile
- In particular, burst errors are frequently undetected
- We’d rather have a scheme that “smears” parity

Need to remain easy to implement in hardware
- So far just shift registers and an XOR gate

We’ll stick to Modulo-2 arithmetic
- Multiplication and division are XOR-based as well
- Let’s do some examples…
Modulo-2 Arithmetic

- Multiplication

\[
\begin{array}{c}
1101 \\
110 \\
\hline
0000 \\
11010 \\
110100 \\
\hline
101110
\end{array}
\]

- Division

\[
\begin{array}{c}
1101 \\
\hline
110 \\
101110 \\
\hline
110 \\
111 \\
110 \\
011 \\
000 \\
\hline
110
\end{array}
\]

CSE 123 – Lecture 6: Reliable Transmission
Cyclic Remainder Check

- Idea is to divide the incoming data, D, rather than add
 - The divisor is called the generator, g
- We can make a CRC resilient to k-bit burst errors
 - Need a generator of $k+1$ bits
- Divide 2^kD by g to get remainder, r
 - Remainder is called frame check sequence
- Send $2^kD - r$ (i.e., 2^kD XOR r)
 - Note 2^kD is just D shifted left k bits
 - Remainder must be at most k bits
- Receiver checks that $(2^kD-r)/g = 0$
Error Detection – CRC

- View data bits, \(D \), as a binary number
- Choose \(r+1 \) bit pattern (generator), \(G \)
- Goal: choose \(r \) CRC bits, \(R \), such that
 - \(<D,R> \) exactly divisible by \(G \) (modulo 2)
 - Receiver knows \(G \), divides \(<D,R> \) by \(G \). If non-zero remainder: error detected!
 - Can detect all burst errors less than \(r+1 \) bits
- Widely used in practice (Ethernet, FDDI, ATM)

\[
D \cdot 2^r \text{ XOR } R
\]
CRC: Rooted in Polynomials

- We’re actually doing polynomial arithmetic
 - Each bit is actually a coefficient of corresponding term in a k^{th}-degree polynomial

$$1101 \text{ is } (1 \times X^3) + (1 \times X^2) + (0 \times X^1) + (1 \times X^0)$$

- Why do we care?
 - Can use the properties of finite fields to analyze effectiveness
 - Says any generator with two terms catches single bit errors
CRC Example Encoding

\[\begin{align*}
x^3 + x^2 + 1 &= 1101 \\
x^7 + x^4 + x^3 + x &= 10011010
\end{align*} \]

Generator

Message

\[\begin{align*}
k + 1 \text{ bit check} \\
\text{sequence } g, \text{ equivalent to a}
\text{degree-}k \text{ polynomial}
\end{align*} \]

\[\begin{array}{c}
1101 \\
10011010000 \\
1001 \\
1101 \\
1000 \\
1101 \\
1011 \\
1101 \\
1100 \\
1101 \\
1000 \\
1101 \\
101
\end{array} \]

Message plus \(k \) zeros (\(\ast 2^k \))

Result:

Transmit message followed by remainder:

\[10011010101 \]
CRC in Hardware

- Key observation is only subtract when MSB is one
 - Recall that subtraction is XOR
 - No explicit check for leading one by using as input to XOR

- Hardware cost very similar to checksum
 - We’re only interested in remainder at the end
 - Only need k registers as remainder is only k bits
CRC Example Decoding

\[x^3 + x^2 + 1 = 1101 \]
\[x^{10} + x^7 + x^6 + x^4 + x^2 + 1 = 10011010101 \]

Received message, no errors

Result:
CRC test is passed
CRC Example Failure

\[x^3 + x^2 + 1 = 1101 \]
\[x^{10} + x^7 + x^5 + x^4 + x^2 + 1 = 10010110101 \]

Generator

Received Message

\(k + 1 \) bit check sequence \(g \), equivalent to a degree-\(k \) polynomial

Two bit errors

Result:

CRC test failed

CSE 123 – Lecture 6: Reliable Transmission
<table>
<thead>
<tr>
<th>Common Generators</th>
<th>Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-8</td>
<td>$x^8 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-10</td>
<td>$x^{10} + x^9 + x^5 + x^4 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-12</td>
<td>$x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-16</td>
<td>$x^{16} + x^{15} + x^2 + 1$</td>
</tr>
<tr>
<td>CRC-CCITT</td>
<td>$x^{16} + x^{12} + x^5 + 1$</td>
</tr>
<tr>
<td>CRC-32</td>
<td>$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$</td>
</tr>
</tbody>
</table>
Error Handling Summary

● Add redundant bits to detect if frame has errors
 ◆ A few bits can detect errors
 ◆ Need more to correct errors

● Strength of code depends on Hamming Distance
 ◆ Number of bitflips between codewords

● Checksums and CRCs are typical methods
 ◆ Both cheap and easy to implement in hardware
 ◆ CRC much more robust against burst errors
Picking up the Pieces

● Link layer is lossy
 ◆ We deliberately threw away corrupt frames last lecture
 ◆ Infrequent bit errors still lead to occasional frame errors
 » 10,000+ bits in each frame

● Things get even harrier if we consider multiple links
 ◆ In a few lectures, we’ll start sending frames on long trips
 ◆ Each intermediate stop might lose, corrupt, reorder, etc.
 ◆ Regardless of cause, we’ll call loss events drops

● We want to provide reliable, in-order delivery
 ◆ Can—and will—do this at multiple layers
Moving up the Stack

Application Layer

Transport Layer

Network Layer

Link Layer

host

host

CSE 123 – Lecture 6: Reliable Transmission
Stepping back:
A thought experiment

- You want to send a long letter to your friend
 - The only medium available to either of you is postcards
 - Postcards get lost in the mail, delayed, damaged, reordered
- How do you ensure that your friend receives the letter?
Reliable Transmission

- The data networking version of the same problem
 - How do we reliably send a message when packets can be lost/corrupted in the network?

- Two options
 - Detect a loss/corruption and retransmit
 - Send data redundantly to tolerate loss/corruption
Simple Idea: ARQ

- Receiver sends **acknowledgments** (ACKs)
 - Sender “times out” and retransmits if it doesn’t receive them
- Basic approach is generically referred to as **Automatic Repeat Request** (ARQ)
Not So Fast...

- Loss can occur on ACK channel as well
 - Sender cannot distinguish data loss from ACK loss
 - Sender will retransmit the data frame

- ACK loss—or early timeout—results in duplication
 - The receiver thinks the retransmission is new data

CSE 123 – Lecture 6: Reliable Transmission
Sequence Numbers

- Sequence numbers solve this problem
 - Receiver can simply ignore duplicate data
 - But must still send an ACK! (Why?)

- Simplest ARQ: **Stop-and-wait**
 - Only one outstanding frame at a time
What if packets are delayed?

- One bit not enough… what to do?
- Never reuse a seq #?
 - Seq #s could be really big
- Require in-order delivery?
 - Hard to guarantee in some networks
- Prevent very late delivery?
 - Limit lifetime of each packet (drop pkt if not delivered in n seconds)
 - Seq #s not reused within delay bound
 - Approximate with big seq #s
For Next Time

- Read 2.6 in P&D