Lecture 5:
Error Handling

CSE 123: Computer Networks
Stefan Savage
Continuing with the Link layer

- Last lecture: Framing (2.3)

- Today: Error detection (2.4)
Framing: When things go wrong

- Clock drift may confuse frame boundaries
 - Read the end of one frame and beginning of the next

- What happens if there are **bit errors** on channel?
 - We might misinterpret sentinels as data or vice versa
 - What will the frames look like?

- In general, need some way to make sure we’re OK
 - Error detection—and perhaps correction
Error Detection

- Implemented at many layers
 - We’ll mainly focus on link-layer techniques today

```
+---+     +---+     +---+     +---+     +---+
|   |  →  |   |  →  |   |  →  |   |  →  |
+---+     +---+     +---+     +---+     +---+

  datagram

  d data bits

  D  EDC

(bit-error prone link)
```

```
+---+     +---+     +---+     +---+     +---+
|   |  →  |   |  →  |   |  →  |   |  →  |
+---+     +---+     +---+     +---+     +---+

  datagram

  Y

  all
  bits in D'
  OK?

  N
detected
error

  D'  EDC'
```
Error Handling

- Error handling through redundancy
 - Adding extra bits to the frame to check for errors

- Hamming Distance
 - When we can detect
 - When we can correct

- Simple schemes: parity, voting, 2d-parity
- Checksum
- Cyclic Remainder Check (CRC)
Basic Idea

- The problem is data itself is not self-verifying
 - Every string of bits is potentially legitimate
 - Hence, any errors/changes in a set of bits are equally legit

- The solution is to reduce the set of potential bitstrings
 - Not every string of bits is allowable
 - Receipt of a disallowed string of bits means the original bits were garbled in transit

- Key question: which bitstrings are allowed?
Codewords

● Let’s start simple, and consider fixed-length bitstrings
 ♦ Reduce our discussion to n-bit substrings
 ♦ E.g., 7-bits at a time, or 4 bits at a time (4B/5B)
 ♦ Or even a frame at a time

● We call an allowable sequence of n bits a **codeword**
 ♦ Not all strings of n bits are codewords!
 ♦ The remaining n-bit strings are “space” between codewords

● Rephrasing previous question: how many codewords with how much space between them?
Hamming Distance

- **Distance between legal codewords**
 - Measured in terms of number of bit flips

- **Efficient** codes are of uniform Hamming Distance
 - All codewords are equidistant from their neighbors

<table>
<thead>
<tr>
<th>Code</th>
<th>Hamming Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td></td>
</tr>
<tr>
<td>000001</td>
<td></td>
</tr>
<tr>
<td>000011</td>
<td></td>
</tr>
<tr>
<td>000111</td>
<td></td>
</tr>
<tr>
<td>001111</td>
<td></td>
</tr>
<tr>
<td>011111</td>
<td></td>
</tr>
<tr>
<td>111111</td>
<td></td>
</tr>
</tbody>
</table>

Hamming Distance = 3
2d+1 Hamming Distance

- Can **detect** up to $2d$ bit flips
 - The next codeword is always $2d+1$ bit flips away
 - Any fewer is guaranteed to land in the middle

- Can **correct** up to d bit flips
 - We just move to the closest codeword
 - Unfortunately, no way to tell how many bit flips
 - E.g., 1, or $(2d+1)-1$?

Diagram

- 000000
- 000001
- 000011
- 000111
- 001111
- 011111
- 111111
Encoding

- We’re going to send only codewords
 - Non-codewords indicate errors to receiver

- But we want to send any set of strings
 - Need to embed arbitrary input into sequence of codewords

- We’ve seen this before: 4B/5B
 - We want more general schemes
Simple Embedding: Parity

- Code with Hamming Distance 2
 - Can detect one bit flip (no correction capability)

- Add extra bit to ensure odd(even) number of ones
 - Code is 66% efficient (need three bits to encode two)
 - Note: Even parity is simply XOR
Simple Correction: Voting

- Simply send each bit \(n \) (3 in this example) times
 - Code with Hamming Distance 3 \((d=1)\)
 - Can detect 2 bit flips and correct 1
- Straightforward duplication is extremely inefficient
 - We can be much smarter about this
Two-Dimensional Parity

- Start with normal parity
 - n data bits, 1 one parity bit
- Do the same across rows
 - m data bytes, 1 parity byte
- Can detect up to 3 bit errors
 - Even most 4-bit errors
- Can correct any 1 bit error
 - Why?
Per-Frame Detection Codes

- Want to add an error detection code per frame
 - Frame is unit of transmission; all or nothing.
 - Computed over the entire frame—including header! Why?
- Receiver checks EDC to make sure frame is valid
 - If frame fails check, throw it away
- We could use error-correcting codes
 - But they are less efficient, and we expect errors to be rare
 - Counter example: satellite communication
Checksums

- Simply sum up all of the data in the frame
 - Transmit that sum as the EDC

- Extremely lightweight
 - Easy to compute fast in hardware
 - Fragile: Hamming Distance of 2

- Also easy to modify if frame is modified in flight
 - Happens a lot to packets on the Internet

- IP packets include a 1’s compliment checksum
IP Checksum Example

- 1’s compliment of sum of \textit{words} (not bytes)
 - Final 1’s compliment means all-zero frame is not valid

\begin{verbatim}
u_short cksum(u_short *buf, int count) {
 register u_long sum = 0;
 while (count--) {
 sum += *buf++;
 if (sum & 0xFFFF0000) {
 /* carry occurred, so wrap around */
 sum &= 0xFFFF;
 sum++;
 }
 }
 return ~(sum & 0xFFFF);
}
\end{verbatim}
Checksum in Hardware

- Compute checksum in Modulo-2 Arithmetic
 - Addition/subtraction is simply XOR operation
 - Equivalent to vertical parity computation

- Need only a word-length shift register and XOR gate
 - Assuming data arrives serially
 - All registers are initially 0
Checksum Example

01010011110100101011110100011101011010011011111011110110
Checksum Example

0101001111010010101111010100111011011101111011101110110

0 0 0 0 0 0 0 0 + 0101...

Data

Parity Byte
Checksum Example

```
01010011110100101011110100011101011010011011111011110110
```

Data ↓ 0

CSE 123 – Lecture 5: Error Handling
Checksum Example

01010011110100101011110100011101011010011011111011110110

Data 01
Checksum Example

01010011110100101011110100011101011010011011111011110110

Data \[\uparrow\] 010

1001...
Checksum Example

01010011110100101011110100011101011010011011111011110110

Data 0101

01010011110100101011110100011101011010011011111011110110

0011...
Checksum Example

01010011110100101011110100011101011010011011111011110110

0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0

Data ▲ 01010011 ▼

1101...
Checksum Example

0101001111010010101111010001110101101001101111101110110

\[1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad + \quad 1010… \]

Data 01010011

Parity Byte 1
Checksum Example

01010011110100101011110100011101011010011011111011110110

Data
Parity Byte

01010011
11
10

0100...
Checksum Example

Data:
- 01010011
- 11010010

Parity Byte:
- 10000001

Parity Byte:
- 10000001

Sum:
- 1011...
Checksum Example

01010011110100101011110100011101011010011011111011110110

01010011 11010010 10111 01011010011011111011110110

0 0 0 0 0 0 1 0 + 0111...
Checksum Example

01010011110100010101111010001110101101001101111010111101110110

Data

Parity Byte

Parity Byte: 1110110
For Next Class (Monday!)

- No class Friday!
- We’ll finish error detection and talk about reliable transport
- Read 2.5 in P&D